128 research outputs found
Cholesterol Lowering in Cancer Prevention and Therapy
The accumulation of cholesterol in cancer cells and tumor tissues promotes cell growth, proliferation, and migration as well as tumor progression. Cholesterol synthesis is catalyzed by a series of enzymatic reactions. Regulation of these key enzymes can control cholesterol synthesis and modulate cellular cholesterol levels in the cells. Meanwhile, controlling cholesterol transportation, absorption, and depletion could also significantly reduce cellular cholesterol levels. The current evidence supports that cholesterol lowering agents, beyond the expected cholesterol-lowering properties, also display an important anticancer activity in reducing cancer cell growth, proliferation and migration, and inducing apoptosis in a variety of cancer cells. Understanding the mechanisms of cholesterol metabolism and cholesterol lowering could potentially benefit cancer patients in cancer prevention and treatment
Letter of Intent: Jinping Neutrino Experiment
Jinping Neutrino Experiment (Jinping) is proposed to significantly improve
measurements on solar neutrinos and geoneutrinos in China Jinping Laboratory -
a lab with a number of unparalleled features, thickest overburden, lowest
reactor neutrino background, etc., which identify it as the world-best
low-energy neutrino laboratory. The proposed experiment will have target mass
of 4 kilotons of liquid scintillator or water-based liquid scintillator, with a
fiducial mass of 2 kilotons for neutrino-electron scattering events and 3
kilotons for inverse-beta interaction events. A number of initial sensitivities
studies have been carried out, including on the transition phase for the solar
neutrinos oscillation from the vacuum to the matter effect, the discovery of
solar neutrinos from the carbon-nitrogen-oxygen (CNO) cycle, the resolution of
the high and low metallicity hypotheses, and the unambiguous separation on U
and Th cascade decays from the dominant crustal anti-electron neutrinos in
China.Comment: Proposal for the Jinping Neutrino Experimen
Multiallelic epistatic model for an out-bred cross and mapping algorithm of interactive quantitative trait loci
Endogenous relapse and exogenous reinfection in recurrent pulmonary tuberculosis: A retrospective study revealed by whole genome sequencing
BackgroundTuberculosis may reoccur due to reinfection or relapse after initially successful treatment. Distinguishing the cause of TB recurrence is crucial to guide TB control and treatment. This study aimed to investigate the source of TB recurrence and risk factors related to relapse in Hunan province, a high TB burden region in southern China.MethodsA population-based retrospective study was conducted on all culture-positive TB cases in Hunan province, China from 2013 to 2020. Phenotypic drug susceptibility testing and whole-genome sequencing were used to detect drug resistance and distinguish between relapse and reinfection. Pearson chi-square test and Fisher exact test were applied to compare differences in categorical variables between relapse and reinfection. The Kaplan–Meier curve was generated in R studio (4.0.4) to describe and compare the time to recurrence between different groups. p < 0.05 was considered statistically significant.ResultsOf 36 recurrent events, 27 (75.0%, 27/36) paired isolates were caused by relapse, and reinfection accounted for 25.0% (9/36) of recurrent cases. No significant difference in characteristics was observed between relapse and reinfection (all p > 0.05). In addition, TB relapse occurs earlier in patients of Tu ethnicity compared to patients of Han ethnicity (p < 0.0001), whereas no significant differences in the time interval to relapse were noted in other groups. Moreover, 83.3% (30/36) of TB recurrence occurred within 3 years. Overall, these recurrent TB isolates were predominantly pan-susceptible strains (71.0%, 49/69), followed by DR-TB (17.4%, 12/69) and MDR-TB (11.6%, 8/69), with mutations mainly in codon 450 of the rpoB gene and codon 315 of the katG gene. 11.1% (3/27) of relapse cases had acquired new resistance during treatment, with fluoroquinolone resistance occurring most frequently (7.4%, 2/27), both with mutations in codon 94 of gyrA.ConclusionEndogenous relapse is the main mechanism leading to TB recurrences in Hunan province. Given that TB recurrences can occur more than 4 years after treatment completion, it is necessary to extend the post-treatment follow-up period to achieve better management of TB patients. Moreover, the relatively high frequency of fluoroquinolone resistance in the second episode of relapse suggests that fluoroquinolones should be used with caution when treating TB cases with relapse, preferably guided by DST results
Critical Transition in Tissue Homeostasis Accompanies Murine Lung Senescence
BACKGROUND: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. METHODS/PRINCIPAL FINDINGS: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. CONCLUSION/SIGNIFICANCE: Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology
Targeting cholesterol synthesis increases chemoimmuno-sensitivity in chronic lymphocytic leukemia cells
Evolution Behavior of the Surface Oxide Film of Al Alloy Scraps in the Melt
The oxide film on the scrap surface is one of the primary sources of oxide inclusions in the aluminum melt. Understanding the evolution of the oxide films in the aluminum melt is an important step for developing efficient recycling technologies and controlling the quality of the product. In the present study, we studied the evolution behavior of the oxide film in the aluminum melt. The oxide films were introduced via aluminum alloy scraps into the melt, and the micro-morphology and composition of the oxide film were analyzed by scanning electron microscope and energy spectrum. Results show that the oxide film on the surface of 1235 alloy foil, A356 alloy turning, and 5083 alloy scalping were broken into small flake oxide film and then transformed into minor granular oxide when the scraps were charged into commercial purity aluminum melt. However, in aluminum alloy melt containing magnesium, the oxide film remained an intact sheet shape up to a certain melt dwelling time
- …
