81,528 research outputs found
The Value-of-Information in Matching with Queues
We consider the problem of \emph{optimal matching with queues} in dynamic
systems and investigate the value-of-information. In such systems, the
operators match tasks and resources stored in queues, with the objective of
maximizing the system utility of the matching reward profile, minus the average
matching cost. This problem appears in many practical systems and the main
challenges are the no-underflow constraints, and the lack of matching-reward
information and system dynamics statistics. We develop two online matching
algorithms: Learning-aided Reward optimAl Matching () and
Dual- () to effectively resolve both challenges.
Both algorithms are equipped with a learning module for estimating the
matching-reward information, while incorporates an additional
module for learning the system dynamics. We show that both algorithms achieve
an close-to-optimal utility performance for any
, while achieves a faster convergence speed and a
better delay compared to , i.e., delay and convergence under
compared to delay and convergence under
( and are maximum estimation errors for
reward and system dynamics). Our results reveal that information of different
system components can play very different roles in algorithm performance and
provide a systematic way for designing joint learning-control algorithms for
dynamic systems
Tunable Fano-Kondo resonance in side-coupled double quantum dot system
We study the interference between the Fano and Kondo effects in a
side-coupled double-quantum- dot system where one of the quantum dots couples
to conduction electron bath while the other dot only side-couples to the first
dot via antiferromagnetic (AF) spin exchange coupling. We apply both the
perturbative renormalization group (RG) and numerical renormalization group
(NRG) approaches to study the effect of AF coupling on the Fano lineshape in
the conduction leads. With particle-hole symmetry, the AF exchange coupling
competes with the Kondo effect and leads to a local spin-singlet ground state
for arbitrary small coupling, so called "two-stage Kondo effect". As a result,
via NRG we find the spectral properties of the Fano lineshape in the tunneling
density of states (TDOS) of conduction electron leads shows double dip-peak
features at the energy scale around the Kondo temperature and the one much
below it, corresponding to the two-stage Kondo effect; it also shows an
universal scaling behavior at very low energies. We find the qualitative
agreement between the NRG and the perturbative RG approach. Relevance of our
work to the experiments is discussed.Comment: 7 pages, 7 figure
Quantum Quenches in the Luttinger model and its close relatives
A number of results on quantum quenches in the Luttinger and related models
are surveyed with emphasis on post-quench correlations. For the Luttinger model
and initial gaussian states, we discuss both sudden and smooth quenches of the
interaction and the emergence of a steady state described by a generalized
Gibbs ensemble. Comparisons between analytics and numerics, and the question of
universality or lack thereof are also discussed. The relevance of the
theoretical results to current and future experiments in the fields of
ultracold atomic gases and mesoscopic systems of electrons is also briefly
touched upon. Wherever possible, our approach is pedagogical and
self-contained. This work is dedicated to the memory of our colleague Alejandro
Muramatsu.Comment: 51+epsilon pages. Review article for or special issue of JSTAT on
non-equilibrium dynamics in integrable systems, Feedback is welcom
Scattering of Bunched Fractionally Charged Quasiparticles
The charge of fractionally charged quasiparticles, proposed by Laughlin to
explain the fractional quantum Hall effect (FQHE), was recently verified by
measurements. Charge q=e/3 and e/5 (e is the electron charge), at filling
factors nu=1/3 and 2/5, respectively, were measured. Here we report the
unexpected bunching of fractional charges, induced by an extremely weak
backscattering potential at exceptionally low electron temperatures (T<10 mK) -
deduced from shot noise measurements. Backscattered charges q=nu e,
specifically, q=e/3, q=2e/5, and q<3e/7, in the respective filling factors,
were measured. For the same settings but at an only slightly higher electron
temperature, the measured backscattered charges were q=e/3, q=e/5, and q=e/7.
In other words, bunching of backscattered quasiparticles is taking place at
sufficiently low temperatures. Moreover, the backscattered current exhibited
distinct temperature dependence that was correlated to the backscattered charge
and the filling factor. This observation suggests the existence of 'low' and
'high' temperature backscattering states, each with its characteristic charge
and characteristic energy.Comment: 4 pages, 3 figure
A global approach for using kinematic redundancy to minimize base reactions of manipulators
An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment
Base reaction optimization of redundant manipulators for space applications
One of the problems associated with redundant manipulators which were proposed for space applications is that the reactions transmitted to the base of the manipulator as a result of the motion of the manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is therefore necessary to minimize the magnitudes of the forces and moments transmitted to the base. It is shown that kinematic redundancy can be used to solve the dynamic problem of minimizing the magnitude of the base reactions. The methodology described is applied to a four degree-of-freedom spatial manipulator with one redundant degree-of-freedom
Finger-gate array quantum pumps:pumping characteristics and mechanisms
We study the pumping effects, in both the adiabatic and nonadiabatic regimes,
of a pair of \QTR{it}{finite} finger-gate array (FGA) on a narrow channel.
Connection between the pumping characteristics and associated mechanisms is
established. The pumping potential is generated by ac biasing the FGA pair. For
a single pair (N=1) of finger gates (FG's), the pumping mechanism is due to the
coherent inelastic scattering of the traversing electron to its subband
threshold. For a pair of FGA with pair number , the dominant pumping
mechanism becomes that of the time-dependent Bragg reflection. The contribution
of the time-dependent Bragg reflection to the pumping is enabled by breaking
the symmetry in the electron transmission when the pumping potential is of a
predominant propagating type. This propagating wave condition can be achieved
both by an appropriate choice of the FGA pair configuration and by the
monitoring of a phase difference between the ac biases in the FGA pair.
The robustness of such a pumping mechanism is demonstrated by considering a FGA
pair with only pair number N=4.Comment: 7 pages, 6 figure
- …
