403 research outputs found

    A Quasi-27-Day Oscillation Activity From the Troposphere to the Mesosphere And Lower Thermosphere at Low Latitudes

    Get PDF
    Using meteor radar, radiosonde observations and MERRA-2 reanalysis data from 12 August to 31 October 2006, we report a dynamical coupling from the tropical lower atmosphere to the mesosphere and lower thermosphere through a quasi-27-day intraseasonal oscillation (ISO). It is interesting that the quasi-27-day ISO is observed in the troposphere, stratopause and mesopause regions, exhibiting a three-layer structure. In the MLT, the amplitude in the zonal wind increases from about 4 ms−1 at 90 km to 15 ms−1 at 100 km, which is diferent from previous observations that ISOs occurs generally in winter with an amplitude peak at about 80–90 km, and then are rapidly weakened with increasing height. Outgoing longwave radiation (OLR) and specifc humidity demonstrate that there is a quasi-27-day periodicity in convective activity in the tropics, which causes the ISO of the zonal wind and gravity wave (GW) activity in the troposphere. The upward propagating GWs are further modulated by the oscillation in the troposphere and upper stratosphere. As the GWs propagate to the MLT, the quasi-27-day oscillation in the wind feld is induced with a clear phase opposite to that in the lower atmosphere through instability and dissipation of these modulated GWs. Wavelet analysis shows that the quasi-27-day variability in the MLT appears as a case event rather than a persistent phenomenon, and has not a clear corresponding relation with the solar rotation efect within 1 year of observations

    Tanshinone IIA mitigates peritoneal fibrosis by inhibiting EMT via regulation of TGF-β/smad pathway

    Get PDF
    Purpose: To explore the effects of tanshinone IIA (T-IIA) on Dianeal-N PD-4 (PDF)-induced expression of fibrogenic cytokines in human peritoneal mesothelial cells (HPMCs), and to elucidate the mechanisms of action involved. Methods: Seven groups of HPMCs were used in the study: control group, PDF group, T-IIA group, LY364947 group, and 2 transforming growth factor-β (TGF-β) groups (TGF-β+ 50 μM T-IIA and TGF-β+ 100 μM T- IIA). The expression levels of mRNA and protein of TGF-β, smad2, smad7, α-smooth muscle actin(α-SMA), fibronectin, collagen І, E-cadherin, N-cadherin, matrix metalloprotein-2(MMP-2), and MMP-9 in the various groups were determined by reverse transcription-polymerase chain reaction (RTPCR) and Western blotting as appropriate. Results: The expressions of α-SMA, fibronectin, collagen І, TGF-β and smad2 were significantly upregulated in HPMCs by PDF treatment, but smad7 was down-regulated, relative to the control group (p < 0.01).These PDF-induced effects were reversed by T-IIA (p < 0.05). Inhibition of TGF-β/smad pathway by LY364947 treatment led to significant decrease in the expressions of fibrosis-related proteins, when compared with PDF group (p < 0.05). TGF-β treatment also produced numerous spindleshaped HPMCs characteristic of epithelial-mesenchymal transition (EMT). However, this morphological transition was alleviated, and the expression levels of EMT-related proteins were significantly downregulated by exposure to the two doses of T-IIA (p < 0.05). Conclusion: Tanshinone IIA inhibits EMT in HPMCs by regulating TGF-β/smad pathway, thus mitigating peritoneal fibrosis. Therefore, T-IIA has promising potential as a new drug for the treatment of peritoneal dialysis (PD)-induced fibrosis. Keywords: Peritoneal dialysis, Peritoneal fibrosis, Tanshinone IIA, Epithelial-mesenchymal transitio

    Coupling Evidence From Lower Atmosphere to Mesosphere and Ionosphere Through Quasi 27-Day Oscillation

    Get PDF
    Using meteor radar, radiosonde and digisonde observations and MERRA-2 reanalysis data from 12 August to 31 October 2006, we report a dynamical coupling from the tropical lower atmosphere to the mesosphere and ionospheric F2 region through a quasi 27-day intraseasonal oscillation (ISO). It is interesting that the quasi 27-day ISO is active in the troposphere and stratopause and mesopause regions, exhibiting a three-layer structure. In the mesosphere and lower thermosphere (MLT), the amplitude in the zonal wind increases from about 4 ms at 90 km to 15 ms at 100 km, which is different from previous observations that ISOs generally have the amplitude peak at about 80-85 km, and then weakens with height. OLR and specific humidity data demonstrate that there is a quasi 27-day periodicity in convective activity in the tropics, which causes the ISO of the zonal wind and gravity wave (GW) activity in the troposphere. GW energy in the stratosphere also exhibits a sharp spectral speak at 27-day period, meaning that the convectively modulated GWs play a vital role in driving the oscillation in the MLT. The quasi 27-day variability arises clearly in the hmF2. Wavelet analysis shows that the dominant period and active time of the hmF2 oscillation are in good agreement with those in the zonal wind of the MLT and OLR rather than in the F10.7 and Kp index. Hence, tropical convective activity has an influence on the dynamics of the MLT and F2 region through modulated waves and ISOs

    The effects of ethylene on the HCl-extractability of trace elements during soybean seed germination

    Get PDF
    Background: Ethylene is capable of promoting seed germination in some plant species. Mobilization of metals such as Fe, Cu, Mn, and Zn in mature seeds takes place when seeds are germinating. However, whether ethylene is involved in the regulation of soybean seed germination and metal element mobilization during early seed germination stage remains unknown. In the present study, seeds were treated with ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and double distilled H2O (ddH20) treatment was used as control. Ethylene emission, ACC synthase (ACS) expression, ACS enzyme activity and Ca, Zn, Mn, Cu and Fe content in hypocotyls were qualified to analyze the relationship between ethylene and mobilization of these elements. Results: The results showed that ACS expression, ACS enzyme activity and ethylene emission peaked at 1 and 7 d after sowing. AVG inhibited ethylene production, promoted the hypocotyls length, ACS expression and its activity, concentrations of total and HCl-extractable Zn, and HCl-extractable Fe in hypocotyls, while ACC caused opposite effects. AVG and ACC treatment had no significantly effects on total and HCl-extractable Ca, Cu and HCl-extractable Mn. Total Mn concentration was promoted by AVG at 1, 3, and 5 d significantly, while ACC treatment tended to have no significantly effects on Mn concentration. Conclusion: These findings suggested that ethylene is at least partly involved in the regulation of soybean seed germination. Remobilization of Zn and Fe may be negatively regulated by ethylene

    Construction of an RNAi vector for knockdown of GM-ACS genes in the cotyledonary nodes of soybean

    Get PDF
    Background: Ethylene plays an important role in the regulation of floral organ development in soybean, and 1-aminocyclopropane-1-carboxylate synthase (ACS) is a rate-limiting enzyme for ethylene biosynthesis. However, whether ACS also regulates floral organ differentiation in soybean remains unknown. To address this, we constructed an RNAi vector to inhibit ACS expression in cotyledonary nodes. Linear DNA cassettes of RNAi-ACS obtained by PCR were used to transform soybean cotyledonary nodes. Results: In total, 131 of 139 transiently transformed plants acquired herbicide resistance and displayed GUS activities in the new buds. In comparison to untransformed seedling controls, a greater number of flower buds were differentiated at the cotyledonary node; GM-ACS1 mRNA expression levels and ethylene emission in the transformed buds were reduced. Conclusion: These results indicate that the cotyledonary node transient transformation system may be suitable for stable transformation and that the inhibition of ACS expression may be an effective strategy for promoting floral organ differentiation in soybean

    Correlation Between Circulating Tumor Cell DNA Genomic Alterations and Mesenchymal CTCs or CTC-Associated White Blood Cell Clusters in Hepatocellular Carcinoma

    Get PDF
    PurposeLiquid biopsy is attracting attention as a method of real-time monitoring of patients with tumors. It can be used to understand the temporal and spatial heterogeneity of tumors and has good clinical application prospects. We explored a new type of circulating tumor cell (CTC) enrichment technology combined with next-generation sequencing (NGS) to analyze the correlation between genomic alterations in circulating tumor cells of hepatocellular carcinoma and the counts of mesenchymal CTCs and CTC-associated white blood cell (CTC-WBC) clusters.MethodsWe collected peripheral blood samples from 29 patients with hepatocellular carcinoma from January 2016 to December 2019. We then used the CanPatrol™ system to capture and analyze mesenchymal CTCs and CTC-WBC clusters for all the patients. A customized Illumina panel was used for DNA sequencing and the Mann–Whitney U test was used to test the correlation between mesenchymal CTCs, CTC-WBC cluster counts, and specific genomic changes.ResultsAt least one somatic hotspot mutation was detected in each of the 29 sequenced patients. A total of 42 somatic hot spot mutations were detected in tumor tissue DNA, and 39 mutations were detected in CTC-DNA, all of which included common changes in PTEN, MET, EGFR, RET, and FGFR3. The number of mesenchymal CTCs was positively correlated with the somatic genomic alterations in the PTEN and MET genes (PTEN, P = 0.021; MET, P  = 0.008, Mann–Whitney U test) and negatively correlated with the somatic genomic alterations in the EGFR gene (P = 0.006, Mann–Whitney U test). The number of CTC-WBC clusters was positively correlated with the somatic genomic alterations in RET genes (P  = 0.01, Mann–Whitney U test) and negatively correlated with the somatic genomic alterations in FGFR3 (P = 0.039, Mann–Whitney U test).ConclusionsWe report a novel method of a CTC enrichment platform combined with NGS technology to analyze genetic variation, which further demonstrates the potential clinical application of this method for spatiotemporal heterogeneity monitoring of hepatocellular carcinoma. We found that the number of peripheral blood mesenchymal CTCs and CTC-WBC clusters in patients with hepatocellular carcinoma was related to a specific genome profile

    The association between obstructive sleep apnoea and diabetic peripheral neuropathy in subjects with type 2 diabetes

    Get PDF
    ObjectiveThis study aimed to examine the association between obstructive sleep apnoea (OSA) and diabetic peripheral neuropathy (DPN) in subjects with type 2 diabetes mellitus (T2DM).MethodsA cross-sectional study was conducted involving 228 T2DM subjects at The First Hospital of Qinhuangdao. OSA was assessed using polysomnography. DPN was diagnosed based on clinical signs, symptoms and electromyography findings. Small fibre neuropathy was additionally assessed through corneal confocal microscopy. Among these T2DM subjects, 124 (54.4%) had DPN. The prevalence of OSA was 67.5% (mild OSA 30.7%, moderate-to-severe OSA 36.8%). DPN prevalence rates were 40.5%, 52.9% and 67.9% in subjects without OSA, with mild OSA, and with moderate-to-severe OSA respectively. Multiple logistic regression analysis revealed that moderate-to-severe OSA was independently associated with DPN in T2DM subjects (AOR=2.176, 95%CI:1.050-4.511, p=0.037). Multiple linear regression analysis demonstrated that apnea hypopnea index (AHI) was independently associated with corneal nerve fiber length (CNFL)(coefficient=-0.032, p=0.049, R2 = 0.029) and CNFT (coefficient=0.023, p<0.001, R2 = 0.171) in T2DM subjects.ConclusionT2DM subjects with OSA demonstrate significantly higher odds of DPN. Furthermore, OSA shows a significant correlation with small fibre damage in T2DM subjects

    Current status of xenotransplantation research and the strategies for preventing xenograft rejection

    Get PDF
    Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation

    Dynamic multi-objective optimisation using deep reinforcement learning::benchmark, algorithm and an application to identify vulnerable zones based on water quality

    Get PDF
    Dynamic multi-objective optimisation problem (DMOP) has brought a great challenge to the reinforcement learning (RL) research area due to its dynamic nature such as objective functions, constraints and problem parameters that may change over time. This study aims to identify the lacking in the existing benchmarks for multi-objective optimisation for the dynamic environment in the RL settings. Hence, a dynamic multi-objective testbed has been created which is a modified version of the conventional deep-sea treasure (DST) hunt testbed. This modified testbed fulfils the changing aspects of the dynamic environment in terms of the characteristics where the changes occur based on time. To the authors’ knowledge, this is the first dynamic multi-objective testbed for RL research, especially for deep reinforcement learning. In addition to that, a generic algorithm is proposed to solve the multi-objective optimisation problem in a dynamic constrained environment that maintains equilibrium by mapping different objectives simultaneously to provide the most compromised solution that closed to the true Pareto front (PF). As a proof of concept, the developed algorithm has been implemented to build an expert system for a real-world scenario using Markov decision process to identify the vulnerable zones based on water quality resilience in São Paulo, Brazil. The outcome of the implementation reveals that the proposed parity-Q deep Q network (PQDQN) algorithm is an efficient way to optimise the decision in a dynamic environment. Moreover, the result shows PQDQN algorithm performs better compared to the other state-of-the-art solutions both in the simulated and the real-world scenario
    corecore