36 research outputs found
P2X7 receptor: Death or life?
The P2X7 plasma membrane receptor is an intriguing molecule that is endowed with the ability to kill cells, as well as to activate many responses and even stimulate proliferation. Here, the authors give an overview on the multiplicity and complexity of P2X7-mediated responses, discussing recent information on this receptor. Particular attention has been paid to early and late signs of apoptosis and necrosis linked to activation of the receptor and to the emerging field of P2X7 function in carcinogenesis
Purinergic signalling and immune cells
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
Liquid biopsies come of age: towards implementation of circulating tumour DNA
Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a ‘liquid biopsy’ for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.We would like to acknowledge the support of The University of Cambridge, Cancer Research UK (grant numbers A11906, A20240, A15601) (to N.R., J.D.B.), the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 337905 (to N.R.), the Cambridge Experimental Cancer Medicine Centre, and Hutchison Whampoa Limited (to N.R.), AstraZeneca (to R.B., S.P.), the Cambridge Experimental Cancer Medicine Centre (ECMC) (to R.B., S.P.), and NIHR Biomedical Research Centre (BRC) (to R.B., S.P.). J.G.C. acknowledges clinical fellowship support from SEOM
Procedures to characterize and study P2Z/P2X7 purinoceptor: flow cytometry as a promising practical, reliable tool
Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry
Unstained human eosinophils exhibit unusually bright autofluorescence, which allows them to be distinguished from other leukocytes using fluorescence microscopy. Eosinophil fluorescence is associated with the cytoplasmic granules of the cells. Eosinophil granule extracts, containing an as-yet-undefined eosinophil fluorescence factor, exhibited excitation maxima at 370 nm and 450 nm, with maximum emission at 520 nm. Eosinophils adhering to opsonized parasites in vitro deposit fluorescent material onto the parasite surface. Eosinophil fluorescence was of sufficient intensity to allow the preparation of viable, highly enriched (greater than or equal to 98%), eosinophil suspensions from peripheral blood of normal and eosinophilic donors using a fluorescence- activated cell sorter. Quantitative studies of eosinophil autofluorescence were performed using flow microfluorometry. Fluorescence intensity of blood eosinophils from normal volunteers and eosinophilic patients varied inversely with the log of the donor's absolute eosinophil count regardless of clinical diagnosis.</jats:p
Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry
Abstract
Unstained human eosinophils exhibit unusually bright autofluorescence, which allows them to be distinguished from other leukocytes using fluorescence microscopy. Eosinophil fluorescence is associated with the cytoplasmic granules of the cells. Eosinophil granule extracts, containing an as-yet-undefined eosinophil fluorescence factor, exhibited excitation maxima at 370 nm and 450 nm, with maximum emission at 520 nm. Eosinophils adhering to opsonized parasites in vitro deposit fluorescent material onto the parasite surface. Eosinophil fluorescence was of sufficient intensity to allow the preparation of viable, highly enriched (greater than or equal to 98%), eosinophil suspensions from peripheral blood of normal and eosinophilic donors using a fluorescence- activated cell sorter. Quantitative studies of eosinophil autofluorescence were performed using flow microfluorometry. Fluorescence intensity of blood eosinophils from normal volunteers and eosinophilic patients varied inversely with the log of the donor's absolute eosinophil count regardless of clinical diagnosis.</jats:p
Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry
Pannexin1 channels act downstream of P2X 7
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X(7) receptors (P2X(7)Rs). However, a link between P2X(7)Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4(+)) and cytotoxic (CD8(+)) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers ((10)Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1(−/−) mice. Moreover, electrophysiological measurements in wild-type CD4(+) cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1(−/−) mice, in which levels of P2X(7)Rs and ATP-induced intracellular free Ca(2+) responses were enhanced suggesting that P2X(7)Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP
