376 research outputs found

    Morphological estimators on Sunyaev-Zel'dovich maps of MUSIC clusters of galaxies

    Get PDF
    The determination of the morphology of galaxy clusters has important repercussions for cosmological and astrophysical studies of them. In this paper, we address the morphological characterization of synthetic maps of the Sunyaev-Zel'dovich (SZ) effect for a sample of 258 massive clusters (Mvir> 5×1014h-1M⊙at z=0), extracted from theMUSIC hydrodynamical simulations. Specifically, we use five known morphological parameters (which are already used in X-ray) and two newly introduced ones, and we combine them in a single parameter. We analyse two sets of simulations obtained with different prescriptions of the gas physics (non-radiative and with cooling, star formation and stellar feedback) at four red shifts between 0.43 and 0.82. For each parameter, we test its stability and efficiency in discriminating the true cluster dynamical state, measured by theoretical indicators. The combined parameter is more efficient at discriminating between relaxed and disturbed clusters. This parameter had a mild correlation with the hydrostatic mass (~0.3) and a strong correlation (~0.8) with the offset between the SZ centroid and the cluster centre of mass. The latter quantity is, thus, the most accessible and efficient indicator of the dynamical state for SZ studiesThis work has been partially supported by funding from Sapienza University of Rome - Progetti di Ricerca Anno 2015 prot. C26A15LXNR. GY and FS acknowledge financial support from MINECO/FEDER under research grant AYA2015-63810-P. ER acknowledge financial contribution from the agreement ASI-INAF n 2017-14-H.

    Construção e uso do pulverizador-logarítmico manual

    Get PDF
    Descreve-se a construção do pulverizador-logarítmico, seu funcionamento e gama de aplicações. Deduzem-se as fórmulas matemáticas em que o mesmo se baseia. Apresentam-se ábacos que permitem determinar a concentração de calda em qualquer ponto da área pulverizada.The construction of a logaritmic-sprayer, its functioning, and range of applications are described. The mathematic formulas in which it is based are inferred. The abacus that allows the solution concentration determination in any point of the treated area is presented

    Storm evolution characterization for analysing stone armour damage progression

    Full text link
    Storm evolution is fundamental for analysing the damage progression of the different failure modes and establishing suitable protocols for maintaining and optimally sizing structures. However, this aspect has hardly been studied and practically the whole of the studies dealing with the subject adopt the Equivalent triangle storm. As against this approach, two new ones are proposed. The first is the Equivalent Triangle Magnitude Storm model (ETMS), whose base, the triangular storm duration, D, is established such that its magnitude (area describing the storm history above the reference threshold level which sets the storm condition),HT, equals the real storm magnitude. The other is the Equivalent Triangle Number of Waves Storm (ETNWS), where the base is referred in terms of the real storm's number of waves,Nz. Three approaches are used for estimating the mean period, Tm, associated to each of the sea states defining the storm evolution, which is necessary to determine the full energy flux withstood by the structure in the course of the extreme event. Two are based on the Jonswap spectrum representativity and the other uses the bivariate Gumbel copula (Hs, Tm), resulting from adjusting the storm peaks. The representativity of the approaches proposed and those defined in specialised literature are analysed by comparing the main armour layer's progressive loss of hydraulic stability caused by real storms and that relating to theoretical ones. An empirical maximum energy flux model is used for this purpose. The agreement between the empirical and theoretical results demonstrates that the representativity of the different approaches depends on the storm characteristics and point towards a need to investigate other geometrical shapes to characterise the storm evolution associated with sea states heavily influenced by swell wave components

    The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications

    Get PDF
    We introduce the The Three Hundred project, an endeavour to model 324 large galaxy clusters with full-physics hydrodynamical re-simulations. Here we present the dataset and study the differences to observations for fundamental galaxy cluster properties and scaling relations. We find that the modelled galaxy clusters are generally in reasonable agreement with observations with respect to baryonic fractions and gas scaling relations at redshift z = 0. However, there are still some (model-dependent) differences, such as central galaxies being too massive, and galaxy colours (g − r) being bluer (about 0.2 dex lower at the peak position) than in observations. The agreement in gas scaling relations down to 1013 h−1M⊙ between the simulations indicates that particulars of the sub-grid modelling of the baryonic physics only has a weak influence on these relations. We also include – where appropriate – a comparison to three semi-analytical galaxy formation models as applied to the same underlying dark matter only simulation. All simulations and derived data products are publicly available

    Measurement of thin film magnetostriction using field-dependent atomic force microscopy

    Get PDF
    Measurement of thin film magnetostriction is a challenging task, as magnetostrictive material deformations in parts per million, in conjunction with materials at small dimensions, require high precision, often with dedicated set-ups, for reproducible results. We have developed a novel approach employing a commercial atomic force microscope (AFM) with attached electromagnets. Magnetostriction measurements are demonstrated on 50 - 500 nm thick Fe81Al19 films sputter deposited directly on high aspect ratio commercial AFM micro-cantilevers. A magnetostrictive deflection of the cantilever bimorph translates into a deflection force acting in a contact mode measurement, which is interpreted and recorded as a change in height. For determination of the magnetostriction coefficient, we have developed a modified version of the equation for the magnetostrictive deflection of a cantilever bimorph by Guerrero and Wetherhold, taking into account long-range attractive forces acting during contact mode AFM measurements in air. The sub-atomic precision of the AFM, combined with the widespread availability of all components and the simple set-up, makes the measurement of magnetostriction on films of just a few tens of nanometers thickness easily accessible.H2020-MSCA-ITN-2014 SELECTA (grant agreement no. 642642 of the European Commission

    Including Ice Effects in a Storm Surge Modeling System

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Unraveling the properties of sharply defined submicron scale FeCu and FePd magnetic structures fabricated by electrodeposition onto electron-beam-lithographed substrates

    Get PDF
    In this work, Fe–X (X = Cu, Pd) submicron-scale structures were electrodeposited onto pre-patterned substrates prepared by e-beam lithography. The FeCu and FePd (with reduced Pd content) systems were investigated as attractive candidates for a variety of potential applications in magnetic data storage and biomedicine. Confined growth in the restricted cavities resulted in a nanoscale grain size leading to well-defined geometries with sharp edges and corners and an average height of up to 215 nm. Specifically, nine 100 μm × 100 μm arrays of three geometries (cylindrical, rectangular and cruciform) in three different sizes were created. In addition, the total deposition time ranged from 3.5 s (FeCu) to 200 s (FePd), i.e. much faster than by traditional physical vapor deposition approaches and was performed at ambient conditions. Magnetic force microscopy for the cylindrical and cruciform structures revealed virtually no contrast at zero field, suggesting magnetic curling effects (instead of coherent rotation) during magnetization reversal. These curling effects result in low values of remanent magnetization, which is advantageous in minimizing dipolar interactions between the structures either when they are deposited onto the substrate or eventually dispersed in a liquid (e.g. in biomedical applications, as drug delivery carriers, where particle agglomeration is undesirable)

    Creating a Multilingual Geospatial Thesaurus: GEOSS Societal Benefit Areas Translations for Italian, Spanish, French and Slovenian

    Get PDF
    The Global Earth Observation System of Systems (GEOSS) Societal Benefit Areas (SBAs) are a set of terms of interest for the development of global spatial data infrastructures. These SBAs form a two level hierarchy (categories and subcategories) ranging from natural disasters to human health. The SBAs are used widely by international geographic information sharing initiatives and policy makers. One of the uses of the SBAs is to allow users to search a spatial data infrastructure for resources that relate to the theme of interest (category or subcategory) selected. However, the SBAs are currently only specified in English. In this paper, we provide a translation of the SBAs into Italian, Spanish, French, and Slovenian in order to support multilingual search, and we underline the issues involved in the translation. Since some of these issues seem to be strictly related to a few discrepancies present in the original version of the SBAs, this paper also proposes a revision of the original set of terms in English

    Electrochemical Synthesis, Magnetic and Optical Characterisation of FePd Dense and Mesoporous Nanowires

    Get PDF
    Dense and mesoporous FePd nanowires (NWs) with 45 to 60 at.% Pd content were successfully fabricated by template- and micelle-assisted pulsed potentiostatic electrodeposition using nanoporous anodic alumina and polycarbonate templates of varying pore sizes. An FePd electrolyte was utilized for obtaining dense NWs while a block copolymer, P-123, was added to this electrolyte as the micelle-forming surfactant to produce mesoporous NWs. The structural and magnetic properties of the NWs were investigated by electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The as-prepared NWs were single phase with a face-centered cubic structure exhibiting 3.1 µm to 7.1 µm of length. Mesoporous NWs revealed a core-shell structure where the porosity was only witnessed in the internal volume of the NW while the outer surface remained non-porous. Magnetic measurements revealed that the samples displayed a soft ferromagnetic behavior that depended on the shape anisotropy and the interwire dipolar interactions. The mesoporous core and dense shell structure of the NWs were seen to be slightly affecting the magnetic properties. Moreover, mesoporous NWs performed excellently as SERS substrates for the detection of 4,4'-bipyridine, showing a low detection limit of 10 −12 M. The signal enhancement can be attributed to the mesoporous morphology as well as the close proximity of the embedded NWs being conducive to localized surface plasmon resonance
    corecore