199 research outputs found
Integrins as therapeutic targets: lessons and opportunities.
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
Recovery of distal coronary flow reserve in LAD and LCx after Y-Graft intervention assessed by transthoracic echocardiography
<p>Abstract</p> <p>Background</p> <p>Y- graft (Y-G) is a graft formed by the Left Internal Mammary Artery (LIMA) connected to the Left Anterior Descending Artery (LAD) and by a free Right Internal Mammary Artery (RIMA) connected to LIMA and to a Marginal artery of Left Circumflex Artery (LCx). Aim of the work was to study the flow of this graft during a six months follow-up to assess whether the graft was able to meet the request of all the left coronary circulation, and to assess whether it could be done by evaluation of coronary flow reserve (CFR).</p> <p>Methods</p> <p>In 13 consecutive patients submitted to Y-G (13 men), CFR was measured in distal LAD and in distal LCx from 1 week after , every two months, up to six months after operation (a total of 8 tests for each patient) by means of transthoracic echocardiography (TTE) and Adenosine infusion (140 mcg/kg/min for 3-6 min). A Sequoia 256, Acuson-Siemens, was used. Contrast was used when necessary (Levovist 300 mg/ml solution at a rate of 0,5-1 ml/min). Max coronary flow diastolic velocity post-/pre-test ≥2 was considered normal CFR.</p> <p>Results</p> <p>Coronary arteriography revealed patency of both branches of Y-G after six months. Accuracy of TTE was 100% for LAD and 85% for LCx. Feasibility was 100% for LAD and 85% for LCx. CFR improved from baseline in LAD (2.21 ± 0.5 to 2.6 ± 0.5, p = 0.03) and in LCx (1.7 ± 1 to 2.12 ± 1, p = 0.05). CFR was under normal at baseline in 30% of patients <it>vs </it>8% after six months in LAD (p = 0.027), and in 69% of patients <it>vs </it>30% after six months in LCx (p = 0.066).</p> <p>Conclusion</p> <p>CFR in Y-G is sometimes reduced in both left territories postoperatively but it improves at six months follow-up. A follow-up can be done non-invasively by TTE and CFR evaluation.</p
Distal left circumflex coronary artery flow reserve recorded by transthoracic Doppler echocardiography: a comparison with Doppler-wire
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Fatigue in kidney transplantation: A systematic review and meta-analysis
Fatigue is still present in up to 40–50% of kidney transplant recipients (KTR), the results of studies comparing the prevalence among patients on hemodialysis (HD) and KTR led to conflicting results. Fatigue correlates include inflammation, symptoms of depression, sleep disorders and obesity. Fatigue in KTR leads to significant functional impairment, it is common among KTR poorly adherent to immunosuppressive therapy and is associated with a serious deterioration of quality of life. The following databases were searched for relevant studies up to November 2020: Medline, PubMed, Web of Science and the Cochrane Library. Several studies have compared the prevalence and severity of fatigue between KTR and hemodialysis or healthy patients. They have shown that fatigue determines a significant functional deterioration with less chance of having a paid job and a significant change in quality of life. The aim of the review is to report methods to assess fatigue and its prevalence in KTR patients, compared to HD subjects and define the effects of fatigue on health status and daily life. There is no evidence of studies on the treatment of this symptom in KTR. Efforts to identify and treat fatigue should be a priority to improve the quality of life of KTR
Assessing the efficacy of targeted therapy using circulating epithelial tumor cells (CETC): the example of SERM therapy monitoring as a unique tool to individualize therapy
Response of Estrogen Receptor-Positive Breast Cancer Tumorspheres to Antiestrogen Treatments
Estrogen signaling plays a critical role in the pathogenesis of breast cancer.
Because the majority of breast carcinomas express the estrogen receptor ERα,
endocrine therapy that impedes estrogen-ER signaling reduces breast cancer
mortality and has become a mainstay of breast cancer treatment. However,
patients remain at continued risk of relapse for many years after endocrine
treatment. It has been proposed that cancer recurrence may be attributed to
cancer stem cells (CSCs)/tumor-initiating cells (TICs). Previous studies in
breast cancer have shown that such cells can be enriched and propagated
in vitro by culturing the cells in suspension as
mammospheres/tumorspheres. Here we established tumorspheres from
ERα-positive human breast cancer cell line MCF7 and investigated their
response to antiestrogens Tamoxifen and Fulvestrant. The tumorsphere cells
express lower levels of ERα and are more tumorigenic in xenograft assays
than the parental cells. Both 4-hydroxytamoxifen (4-OHT) and Fulvestrant
attenuate tumorsphere cell proliferation, but only 4-OHT at high concentrations
interferes with sphere formation. However, treated tumorsphere cells retain the
self-renewal capacity. Upon withdrawal of antiestrogens, the treated cells
resume tumorsphere formation and their tumorigenic potential remains undamaged.
Depletion of ERα shows that ERα is dispensable for tumorsphere formation
and xenograft tumor growth in mice. Surprisingly, ERα-depleted tumorspheres
display heightened sensitivity to 4-OHT and their sphere-forming capacity is
diminished after the drug is removed. These results imply that 4-OHT may inhibit
cellular targets besides ERα that are essential for tumorsphere growth, and
provide a potential strategy to sensitize tumorspheres to endocrine
treatment
Comparison of gene expression profiles in core biopsies and corresponding surgical breast cancer samples
INTRODUCTION: Gene expression profiling has been successfully used to classify breast cancer into clinically distinct subtypes, and to predict the risk of recurrence and treatment response. The aim of this study was to investigate whether the gene expression profile (GEP) detected in a core biopsy (CB) is representative for the entire tumor, since CB is an important tool in breast cancer diagnosis. Moreover, we investigated whether performing CBs prior to the surgical excision could influence the GEP of the respective tumor. METHODS: We quantified the RNA expression of 60 relevant genes by quantitative real-time PCR in paired CBs and surgical specimens from 22 untreated primary breast cancer patients. Subsequently, expression data were compared with independent GEPs obtained from tumors of 317 patients without preceding CB. RESULTS: In 82% of the cases the GEP detected in the CB correlated very well with the corresponding profile in the surgical sample (r(s )≥ 0.95, p < 0.001). Gene-by-gene analysis revealed four genes significantly elevated in the surgical sample compared to the CB; these comprised genes mainly involved in inflammation and the wound repair process as well as in tumor invasion and metastasis. CONCLUSION: A GEP detected in a CB are representative for the entire tumor and is, therefore, of clinical relevance. The observed alterations of individual genes after performance of CB deserve attention since they might impact the clinical interpretation with respect to prognosis and therapy prediction of the GEP as detected in the surgical specimen following CB performance
Re-surgery and chest wall re-irradiation for recurrent breast cancer - a second curative approach
Merging transcriptomics and metabolomics - advances in breast cancer profiling
Background
Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information.
Methods
Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS.
Results
In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO) terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most to choline. Additionally, a subset of transcripts was identified to have slightly altered expression after HR MAS MRS and was therefore removed from all other analyses.
Conclusions
Combining transcriptional and metabolic data from the same breast carcinoma sample is feasible and may contribute to a more refined subclassification of breast cancers as well as reveal relations between metabolic and transcriptional levels.
See Commentary:
http://www.biomedcentral.com/1741-7015/8/7
FADD phosphorylation is critical for cell cycle regulation in breast cancer cells
Anti-oestrogen therapy is effective for control of hormone receptor-positive breast cancers, although the detailed molecular mechanisms, including signal transduction, remain unclear. We demonstrated here that long-term tamoxifen treatment causes G2/M cell cycle arrest through c-jun N-terminal kinase (JNK) activation, which is dependent on phosphorylation of Fas-associated death domain-containing protein (FADD) at 194 serine in an oestrogen (ER) receptor-positive breast cancer cell line, MCF-7. Expression of a dominant negative mutant form of MKK7, a kinase upstream of JNK, or mutant FADD (S194A) in MCF-7 cells suppressed the cytotoxicity of long-term tamoxifen treatment. Of great interest, similar signallings could be evoked by paclitaxel, even in an ER-negative cell line, MDA-MB-231. In addition, immunohistochemical analysis using human breast cancer specimens showed a close correlation between phosphorylated JNK and FADD expression, both being significantly reduced in cases with metastatic potential. We conclude that JNK-mediated phosphorylation of FADD plays an important role in the negative regulation of cell growth and metastasis, independent of the ER status of a breast cancer, so that JNK/FADD signals might be promising targets for cancer therapy
- …
