169 research outputs found
Comparing and contrasting the cognitive effects of hippocampal and ventromedial prefrontal cortex damage: A review of human lesion studies.
The hippocampus and ventromedial prefrontal cortex (vmPFC) are closely connected brain regions whose functions are still debated. In order to offer a fresh perspective on understanding the contributions of these two brain regions to cognition, in this review we considered cognitive tasks that usually elicit deficits in hippocampal-damaged patients (e.g., autobiographical memory retrieval), and examined the performance of vmPFC-lesioned patients on these tasks. We then took cognitive tasks where performance is typically compromised following vmPFC damage (e.g., decision making), and looked at how these are affected by hippocampal lesions. Three salient motifs emerged. First, there are surprising gaps in our knowledge about how hippocampal and vmPFC patients perform on tasks typically associated with the other group. Second, while hippocampal or vmPFC damage seems to adversely affect performance on so-called hippocampal tasks, the performance of hippocampal and vmPFC patients clearly diverges on classic vmPFC tasks. Third, although performance appears analogous on hippocampal tasks, on closer inspection, there are significant disparities between hippocampal and vmPFC patients. Based on these findings, we suggest a tentative hierarchical model to explain the functions of the hippocampus and vmPFC. We propose that the vmPFC initiates the construction of mental scenes by coordinating the curation of relevant elements from neocortical areas, which are then funneled into the hippocampus to build a scene. The vmPFC then engages in iterative re-initiation via feedback loops with neocortex and hippocampus to facilitate the flow and integration of the multiple scenes that comprise the coherent unfolding of an extended mental event
Present and future self in memory: the role of vmPFC in the self-reference effect
Self-related information is remembered better than other-related information (self-reference effect; SRE), a phenomenon that has been convincingly linked to the medial prefrontal cortex. It is not clear whether information related to our future self would also have a privileged status in memory, as medial prefrontal cortex (mPFC) regions respond less to the future than to the present self, as if it were an 'other'. Here we ask whether the integrity of the ventral mPFC (vmPFC) is necessary for the emergence of the present and future SRE, if any. vmPFC patients and brain-damaged and healthy controls judged whether each of a series of trait adjectives was descriptive of their present self, future self, another person and that person in the future and later recognized studied traits among distractors. Information relevant to the present (vs future) was generally recognized better, across groups. However, whereas healthy and brain-damaged controls exhibited strong present and future SREs, these were absent in vmPFC patients, who concomitantly showed reduced certainty about their own present and anticipated traits compared to the control groups. These findings indicate that vmPFC is necessary to impart a special mnemonic status to self-related information, including our envisioned future self, possibly by instantiating the self-schema
Ventromedial Prefrontal Cortex Does Not Play a Selective Role in Pattern Separation
Humans have the capacity to form new memories of events that are, at times, highly similar to events experienced in the past, as well as the capacity to integrate and associate new information within existing knowledge structures. The former process relies on mnemonic discrimination and is believed to depend on hippocampal pattern separation, whereas the latter is believed to depend on generalization signals and conceptual categorization supported by the neocortex. Here, we examine whether and how the ventromedial prefrontal cortex (vMPFC) supports discrimination and generalization on a widely used task that was primarily designed to tax hippocampal processes. Ten individuals with lesions to the vMPFC and 46 neurotypical control participants were administered an adapted version of the mnemonic similarity task [Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. L. A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51, 2442-2449, 2013], which assesses the ability to distinguish previously learned images of everyday objects (targets) from unstudied, highly similar images (lures) and dissimilar images (foils). Relative to controls, vMPFC-lesioned individuals showed intact discrimination of lures from targets but a propensity to mistake studied targets and similar lures for dissimilar foils. This pattern was accompanied by inflated confidence despite low accuracy when responding to similar lures. These findings demonstrate a more general role of the vMPFC in memory retrieval, rather than a specific role in supporting pattern separation
The role of posterior parietal cortex and medial prefrontal cortex in distraction and mind-wandering
Distraction reflects a drift of attention away from the task at hand towards task-irrelevant external or internal information (mind-wandering). The right posterior parietal cortex (PPC) and the medial prefrontal cortex (mPFC) are known to mediate attention to external information and mind-wandering, respectively, but it is not clear whether they support each process selectively or rather they play similar roles in supporting both. In this study, participants performed a visual search task including salient color singleton distractors before and after receiving cathodal (inhibitory) transcranial direct current stimulation (tDCS) to the right PPC, the mPFC, or sham tDCS. Thought probes assessed the intensity and contents of mind-wandering during visual search. The results show that tDCS to the right PPC but not mPFC reduced the attentional capture by the singleton distractor during visual search. tDCS to both mPFC and PPC reduced mind-wandering, but only tDCS to the mPFC specifically reduced future-oriented mind-wandering. These results suggest that the right PPC and mPFC play a different role in directing attention towards task-irrelevant information. The PPC is involved in both external and internal distraction, possibly by mediating the disengagement of attention from the current task and its reorienting to salient information, be this a percept or a mental content (mind-wandering). By contrast, the mPFC uniquely supports mind-wandering, possibly by mediating the endogenous generation of future-oriented thoughts capable to draw attention inward, away from ongoing activities
Temporal Construal Effects Are Independent of Episodic Future Thought
Human thought is prone to biases. Some biases serve as beneficial heuristics to free up limited cognitive resources or improve well-being, but their neurocognitive basis is unclear. One such bias is a tendency to construe events in the distant future in abstract, general terms and events in the near future in concrete, detailed terms. Temporal construal may rely on our capacity to orient toward and/or imagine context-rich future events. We tested 21 individuals with impaired episodic future thinking resulting from lesions to the hippocampus or ventromedial prefrontal cortex (vmPFC) and 57 control participants (aged 45-76 years) from Canada and Italy on measures sensitive to temporal construal. We found that temporal construal persisted in most patients, even those with impaired episodic future thinking, but was abolished in some vmPFC cases, possibly in relation to difficulties forming and maintaining future intentions. The results confirm the fractionation of future thinking and that parts of vmPFC might critically support our ability to flexibly conceive and orient ourselves toward future events
Computational constraints on the associative recall of spatial scenes
We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory, for example of a spatial view, is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed
Scene processing following damage to the ventromedial prefrontal cortex
It has been suggested that the mental construction of scene imagery is a core process underpinning functions such as autobiographical memory, future thinking and spatial navigation. Damage to the ventromedial prefrontal cortex in humans can cause deficits in all of these cognitive domains. Moreover, it has also been reported that patients with ventromedial prefrontal cortex lesions are impaired at imagining fictitious scenes, although they seem able to describe specific scenes from autobiographical events. In general, not much is known about how ventromedial prefrontal cortex patients process scenes. Here, we deployed a recently-developed task to provide insights into this issue, which involved detecting either semantic (e.g. an elephant with butterflies for ears) or constructive (e.g. an endless staircase) violations in scene images. Identifying constructive violations typically provokes the formation of internal scene models in healthy control participants. We tested patients with bilateral ventromedial prefrontal cortex damage, brain-damaged control patients and healthy control participants. We found no evidence for statistically significant differences between the groups in detecting either type of violation. These results suggest that an intact ventromedial prefrontal cortex is not necessary for some aspects of scene processing, with implications for understanding its role in functions such as autobiographical memory and future thinking
Functional Interplay Between Posterior Parietal Cortex and Hippocampus During Detection of Memory Targets and Non-targets
© Copyright © 2020 Ciaramelli, Burianová, Vallesi, Cabeza and Moscovitch. Posterior parietal cortex is frequently activated during episodic memory retrieval but its role during retrieval and its interactions with the hippocampus are not yet clear. In this fMRI study, we investigated the neural bases of recognition memory when study repetitions and retrieval goals were manipulated. During encoding participants studied words either once or three times, and during retrieval they were rewarded more to detect either studied words or new words. We found that (1) dorsal parietal cortex (DPC) was more engaged during detection of items studied once compared to three times, whereas regions in the ventral parietal cortex (VPC) responded more to items studied multiple times; (2) DPC, within a network of brain regions functionally connected to the anterior hippocampus, responded more to items consistent with retrieval goals (associated with high reward); (3) VPC, within a network of brain regions functionally connected to the posterior hippocampus, responded more to items not aligned with retrieval goals (i.e., unexpected). These findings support the hypothesis that DPC and VPC regions contribute differentially to top-down vs. bottom-up attention to memory. Moreover, they reveal a dissociation in the functional profile of the anterior and posterior hippocampi
Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults
There is growing interest in the potential benefits of mindfulness meditation practices in terms of counteracting some of the cognitive effects associated with aging. Pursuing this question, the aim of the present study was to investigate the influence of mindfulness training on executive control and emotion regulation in older adults, by means of studying behavioral and electrophysiological changes. Participants, 55 to 75 years of age, were randomly allocated to an 8-week mindful breath awareness training group or an active control group engaging in brain training exercises. Before and after the training period, participants completed an emotional-counting Stroop task, designed to measure attentional control and emotion regulation processes. Concurrently, their brain activity was measured by means of 64-channel electroencephalography. The results show that engaging in just over 10 min of mindfulness practice five times per week resulted in significant improvements in behavioral (response latency) and electrophysiological (N2 event-related potential) measures related to general task performance. Analyses of the underlying cortical sources (Variable Resolution Electromagnetic Tomography, VARETA) indicate that this N2-related effect is primarily associated with changes in the right angular gyrus and other areas of the dorsal attention network. However, the study did not find the expected specific improvements in executive control and emotion regulation, which may be due to the training instructions or the relative brevity of the intervention. Overall, the results indicate that engaging in mindfulness meditation training improves the maintenance of goal-directed visuospatial attention and may be a useful strategy for counteracting cognitive decline associated with aging
- …
