2,290 research outputs found
CRASH: a Radiative Transfer Scheme
We present a largely improved version of CRASH, a 3-D radiative transfer code
that treats the effects of ionizing radiation propagating through a given
inhomogeneous H/He cosmological density field, on the physical conditions of
the gas. The code, based on a Monte Carlo technique, self-consistently
calculates the time evolution of gas temperature and ionization fractions due
to an arbitrary number of point/extended sources and/or diffuse background
radiation with given spectra. In addition, the effects of diffuse ionizing
radiation following recombinations of ionized atoms have been included. After a
complete description of the numerical scheme, to demonstrate the performances,
accuracy, convergency and robustness of the code we present four different test
cases designed to investigate specific aspects of radiative transfer: (i) pure
hydrogen isothermal Stromgren sphere; (ii) realistic Stromgren spheres; (iii)
multiple overlapping point sources, and (iv) shadowing of background radiation
by an intervening optically thick layer. When possible, detailed quantitative
comparison of the results against either analytical solutions or 1-D standard
photoionization codes has been made showing a good level of agreement. For more
complicated tests the code yields physically plausible results, which could be
eventually checked only by comparison with other similar codes. Finally, we
briefly discuss future possible developments and cosmological applications of
the code.Comment: 17 pages, 14 figures, accepted for pubblication in MNRAS, high res
figures available at
http://www.arcetri.astro.it/science/cosmology/IGM/radtrans.htm
Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator
The aim of this work is to model the jets produced by conical wire arrays on
the MAGPIE generator, and to design and test new setups to strengthen the link
between laboratory and astrophysical jets. We performed the modelling with
direct three-dimensional magneto-hydro-dynamic numerical simulations using the
code GORGON. We applied our code to the typical MAGPIE setup and we
successfully reproduced the experiments. We found that a minimum resolution of
approximately 100 is required to retrieve the unstable character of the jet. We
investigated the effect of changing the number of wires and found that arrays
with less wires produce more unstable jets, and that this effect has magnetic
origin. Finally, we studied the behaviour of the conical array together with a
conical shield on top of it to reduce the presence of unwanted low density
plasma flows. The resulting jet is shorter and less dense.Comment: Accepted for publication in Astrophysics & Space Science. HEDLA 2010
conference procedings. Final pubblication will be available on Springe
CRASH3: cosmological radiative transfer through metals
Here we introduce CRASH3, the latest release of the 3D radiative transfer
code CRASH. In its current implementation CRASH3 integrates into the reference
algorithm the code Cloudy to evaluate the ionisation states of metals,
self-consistently with the radiative transfer through H and He. The feedback of
the heavy elements on the calculation of the gas temperature is also taken into
account, making of CRASH3 the first 3D code for cosmological applications which
treats self-consistently the radiative transfer through an inhomogeneous
distribution of metal enriched gas with an arbitrary number of point sources
and/or a background radiation. The code has been tested in idealized
configurations, as well as in a more realistic case of multiple sources
embedded in a polluted cosmic web. Through these validation tests the new
method has been proven to be numerically stable and convergent. We have studied
the dependence of the results on a number of physical quantities such as the
source characteristics (spectral range and shape, intensity), the metal
composition, the gas number density and metallicity.Comment: accepted for publication in MNRA
Inhomogeneous Reionization Regulated by Radiative and Stellar Feedbacks
We study the inhomogeneous reionization in a critical density CDM universe
due to stellar sources, including Population III objects. The spatial
distribution of the sources is obtained from high resolution numerical N-body
simulations. We calculate the source properties taking into account a
self-consistent treatment of both radiative (ie ionizing and H2
-photodissociating photons) and stellar (ie SN explosions) feedbacks regulated
by massive stars. This allows us to describe the topology of the ionized and
dissociated regions at various cosmic epochs and derive the evolution of H, He,
and H2 filling factors, soft UV background, cosmic star formation rate and the
final fate of ionizing objects. The main results are: (i) galaxies reionize the
IGM by z~10 (with some uncertainty related to the gas clumping factor), whereas
H2 is completely dissociated already by z~25; (ii) reionization is mostly due
to the relatively massive objects which collapse via H line cooling, while
objects whose formation relies on H2 cooling alone are insufficient to this
aim; (iii) the diffuse soft UV background is the major source of radiative
feedback effects for z<15; at higher z direct flux from neighboring objects
dominates; (iv) the match of the calculated cosmic star formation history with
the one observed at lower redshifts suggests that the conversion efficiency of
baryons into stars is ~1%; (v) we find that a very large population of dark
objects which failed to form stars is present by z~8. We discuss and compare
our results with similar previous studies.Comment: 34 pages, emulateapj.sty, LaTeX, 13 figures. MNRAS, submitte
Detecting Unresolved Binaries in TESS Data with Speckle Imaging
The Transiting Exoplanet Survey Satellite (TESS) is conducting a two-year
wide-field survey searching for transiting exoplanets around nearby bright
stars that will be ideal for follow-up characterization. To facilitate studies
of planet compositions and atmospheric properties, accurate and precise
planetary radii need to be derived from the transit light curves. Since 40 -
50% of exoplanet host stars are in multiple star systems, however, the observed
transit depth may be diluted by the flux of a companion star, causing the
radius of the planet to be underestimated. High angular resolution imaging can
detect companion stars that are not resolved in the TESS Input Catalog, or by
seeing-limited photometry, to validate exoplanet candidates and derive accurate
planetary radii. We examine the population of stellar companions that will be
detectable around TESS planet candidate host stars, and those that will remain
undetected, by applying the detection limits of speckle imaging to the
simulated host star populations of Sullivan et al. (2015) and Barclay et al.
(2018). By detecting companions with contrasts of delta m < 7 - 9 and
separations of ~0.02 - 1.2'', speckle imaging can detect companion stars as
faint as early M stars around A - F stars and stars as faint as mid-M around G
- M stars, as well as up to 99% of the expected binary star distribution for
systems located within a few hundred parsecs.Comment: Accepted for publication in The Astronomical Journal; 16 pages, 8
figures, 2 table
A Technique to Derive Improved Proper Motions for Kepler Objects of Interest
We outline an approach yielding proper motions with higher precision than
exists in present catalogs for a sample of stars in the Kepler field. To
increase proper motion precision we combine first moment centroids of Kepler
pixel data from a single Season with existing catalog positions and proper
motions. We use this astrometry to produce improved reduced proper motion
diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as
Kepler Objects of Interest. The more precise the relative proper motions, the
better the discrimination between stellar luminosity classes. With UCAC4 and
PPMXL epoch 2000 positions (and proper motions from those catalogs as
quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0)
spanning two years yields proper motions with an average per-coordinate proper
motion error of 1.0 millisecond of arc per year, over a factor of three better
than existing catalogs. We apply a mapping between a reduced proper motion
diagram and an HR diagram, both constructed using HST parallaxes and proper
motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The
techniques discussed apply to any future small-field astrometry as well as the
rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201
Interferometric Evidence for Resolved Warm Dust in the DQ Tau System
We report on near-infrared (IR) interferometric observations of the
double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data
with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis
of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess;
modeling our data requires inclusion of near-IR light from an 'excess' source.
Remarkably the excess source is resolved in our data, similar in scale to the
binary itself ( 0.2 AU at apastron), rather than the larger circumbinary
disk ( 0.4 AU radius). Our observations support the \citet{Mathieu1997}
and \citet{Carr2001} inference of significant warm material near the DQ Tau
binary.Comment: 14 pgs, 3 figures, ApJL in pres
- …
