1,037 research outputs found
Photoinduced inverse spin Hall effect in Pt/Ge(001) at room temperature
We performed photoinduced inverse spin Hall effect (ISHE) measurements on a
Pt/Ge(001) junction at room temperature. The spin-oriented electrons,
photogenerated at the direct gap of Ge using circularly polarized light,
provide a net spin current which yields an electromotive field E_ISHE in the Pt
layer. Such a signal is clearly detected at room temperature despite the strong
{\Gamma} to L scattering which electrons undergo in the Ge conduction band. The
ISHE signal dependence on the exciting photon energy is in good agreement with
the electron spin polarization expected for optical orientation at the direct
gap of Ge
New multi-scale approach to improve explanation of patterns of contemporary morphodynamics in the badland landscapes of Central Italy. The important Quaternary context
Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy
A simple, reliable method for preparation of bulk Cr tips for Scanning
Tunneling Microscopy (STM) is proposed and its potentialities in performing
high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are
investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to
what happens with conventional W tips, rest atoms of the Si(111)-7x7
reconstruction can be routinely observed, probably due to a different
electronic structure of the tip apex. SP-STM measurements of the Cr(001)
surface showing magnetic contrast are reported. Our results reveal that the
peculiar properties of these tips can be suited in a number of STM experimental
situations
Spin-polarized tunneling spectroscopy in tunnel junctions with half-metallic electrodes
We have studied the magnetoresistance (TMR) of tunnel junctions with
electrodes of La2/3Sr1/3MnO3 and we show how the variation of the conductance
and TMR with the bias voltage can be exploited to obtain a precise information
on the spin and energy dependence of the density of states. Our analysis leads
to a quantitative description of the band structure of La2/3Sr1/3MnO3 and
allows the determination of the gap delta between the Fermi level and the
bottom of the t2g minority spin band, in good agreement with data from
spin-polarized inverse photoemission experiments. This shows the potential of
magnetic tunnel junctions with half-metallic electrodes for spin-resolved
spectroscopic studies.Comment: To appear in Physical Review Letter
A low-voltage retarding-field Mott polarimeter for photocathode characterization
Nuclear physics experiments at Thomas Jefferson National Accelerator
Facility's CEBAF rely on high polarization electron beams. We describe a
recently commissioned system for prequalifying and studying photocathodes for
CEBAF with a load-locked, low-voltage polarized electron source coupled to a
compact retarding-field Mott polarimeter. The polarimeter uses simplified
electrode structures and operates from 5 to 30 kV. The effective Sherman
function for this device has been calibrated by comparison with the CEBAF 5 MeV
Mott polarimeter. For elastic scattering from a thick gold target at 20 keV,
the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV,
defined as the detected count rate divided by the incident particle current, is
5.4(2) x 10-4, yielding a figure-of-merit, or analyzing power squared times
efficiency, of 1.0(1) x 10-5. The operating parameters of this new polarimeter
design are compared to previously published data for other compact Mott
polarimeters of the retarding-field type.Comment: 9 figure
Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)
The phase immiscibility and the excellent matching between Ag(001) and
Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field
of low dimensionality magnetic systems. Intermixing could be drastically
limited at deposition temperatures as low as 140-150 K. The film structural
evolution induced by post-growth annealing presents many interesting aspects
involving activated atomic exchange processes and affecting magnetic
properties. Previous experiments, of He and low energy ion scattering on films
deposited at 150 K, indicated the formation of a segregated Ag layer upon
annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag
matrix. In those experiments, information on sub-surface layers was attained by
techniques mainly sensitive to the topmost layer. Here, systematic PED
measurements, providing chemical selectivity and structural information for a
depth of several layers, have been accompanied with a few XRD rod scans,
yielding a better sensitivity to the buried interface and to the film long
range order. The results of this paper allow a comparison with recent models
enlightening the dissolution paths of an ultra thin metal film into a different
metal, when both subsurface migration of the deposit and phase separation
between substrate and deposit are favoured. The occurrence of a surfactant-like
stage, in which a single layer of Ag covers the Fe film is demonstrated for
films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the
formation of two Ag capping layers is also reported. As the annealing
temperature was increased beyond 700 K, the surface layers closely resembled
the structure of bare Ag(001) with the residual presence of subsurface Fe
aggregates.Comment: 4 pages, 3 figure
Optical spin injection and spin lifetime in Ge heterostructures
We demonstrate optical orientation in Ge/SiGe quantum wells and study their
spin properties. The ultrafast electron transfer from the center of the
Brillouin zone to its edge allows us to achieve high spin-polarization
efficiencies and to resolve the spin dynamics of holes and electrons. The
circular polarization degree of the direct-gap photoluminescence exceeds the
theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and
light holes states, respectively. The spin lifetime of holes at the top of the
valence band is found to be ~0.5 ps and it is governed by transitions between
heavy and light hole states. Electrons at the bottom of the conduction band, on
the other hand, have a spin lifetime that exceeds 5 ns below 150 K. Theoretical
analysis of the electrons spin relaxation indicates that phonon-induced
intervalley scattering dictates the spin lifetime.Comment: 5 pages, 3 figure
- …
