904 research outputs found
The determination of the global average OH concentration using a deuteroethane tracer
It is proposed to measure the decreasing global concentration of an OH reactive isotopic tracer, G sub 2 D sub 6, after its introduction into the troposphere in a manner to facilitate uniform global mixing. Analyses at the level of 2 x 10 to the -19th power fraction, corresponding to one kg uniformly distributed globally, should be possible by a combination of cryogenic absorption techniques to separate ethane from air and high sensitivity isotopic analysis of ethane by mass spectrometry. Aliquots of C sub 2 D sub 6 totaling one kg would be introduced to numerous southern and northern latitudes over a 10 day period in order to achieve a uniform global concentration within 3 to 6 months by the normal atmospheric circulation. Then samples of air of 1000 l (STP) would be collected periodically at a tropical and temperate zone location in each hemisphere and spiked with a known amount of another isotopic species of ethane, C-13 sub 2 H sub 6, at the level of 10 to the -11th power mole fraction. After separation of the ethanes from air, the absolute concentration of C sub 2 D sub 6 would be analyzed using the Argonne 100-inch radius mass spectrometer
Dynamical heterogeneities in a supercooled Lennard-Jones liquid
We present the results of a large scale molecular dynamics computer
simulation study in which we investigate whether a supercooled Lennard-Jones
liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian
parameter for the self part of the van Hove correlation function and use it to
identify ``mobile'' particles. We find that these particles form clusters whose
size grows with decreasing temperature. We also find that the relaxation time
of the mobile particles is significantly shorter than that of the bulk, and
that this difference increases with decreasing temperature.Comment: 8 pages of RevTex, 4 ps figure
Positional Encoding by Robots with Non-Rigid Movements
Consider a set of autonomous computational entities, called \emph{robots},
operating inside a polygonal enclosure (possibly with holes), that have to
perform some collaborative tasks. The boundary of the polygon obstructs both
visibility and mobility of a robot. Since the polygon is initially unknown to
the robots, the natural approach is to first explore and construct a map of the
polygon. For this, the robots need an unlimited amount of persistent memory to
store the snapshots taken from different points inside the polygon. However, it
has been shown by Di Luna et al. [DISC 2017] that map construction can be done
even by oblivious robots by employing a positional encoding strategy where a
robot carefully positions itself inside the polygon to encode information in
the binary representation of its distance from the closest polygon vertex. Of
course, to execute this strategy, it is crucial for the robots to make accurate
movements. In this paper, we address the question whether this technique can be
implemented even when the movements of the robots are unpredictable in the
sense that the robot can be stopped by the adversary during its movement before
reaching its destination. However, there exists a constant ,
unknown to the robot, such that the robot can always reach its destination if
it has to move by no more than amount. This model is known in
literature as \emph{non-rigid} movement. We give a partial answer to the
question in the affirmative by presenting a map construction algorithm for
robots with non-rigid movement, but having bits of persistent memory and
ability to make circular moves
Protein Stabilized and Sustained Deliverable Nanofiber Smart Scaffold for Multiphase Tissue Regeneration
Tissue engineering
(TE) represent a paradigm shift in healthcare
therapies and treatments by repairing,
replacing, or regenerating damaged cells and
tissues in human body.
Chemical cues such
as growth factors (GFs) and cytokines, and
there successful delivery is the key
components in TE with the ability to target
specific tissue regeneration
Heterogeneous Diffusion in Highly Supercooled Liquids
The diffusivity of tagged particles is demonstrated to be very heterogeneous
on time scales comparable to or shorter than the relaxation time
( the stress relaxation time) in a highly supercooled
liquid via 3D molecular dynamics simulation. The particle motions in the
relatively active regions dominantly contribute to the mean square
displacement, giving rise to a diffusion constant systematically larger than
the Einstein-Stokes value. The van Hove self-correlation function is
shown to have a long distance tail which can be scaled in terms of
for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in
the active regions. However, the diffusion process eventually becomes
homogeneous on time scales longer than the life time of the heterogeneity
structure ().Comment: 4 pages, 5 figure
Trends in source gases
Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Structural Relaxation, Self Diffusion and Kinetic Heterogeneity in the Two Dimensional Lattice Coulomb Gas
We present Monte Carlo simulation results on the equilibrium relaxation
dynamics in the two dimensional lattice Coulomb gas, where finite fraction
of the lattice sites are occupied by positive charges. In the case of high
order rational values of close to the irrational number
( is the golden mean), we find that the system
exhibits, for wide range of temperatures above the first-order transition, a
glassy behavior resembling the primary relaxation of supercooled liquids.
Single particle diffusion and structural relaxation show that there exists a
breakdown of proportionality between the time scale of diffusion and that of
structural relaxation analogous to the violation of the Stokes-Einstein
relation in supercooled liquids. Suitably defined dynamic cooperativity is
calculated to exhibit the characteristic nature of dynamic heterogeneity
present in the system.Comment: 12 pages, 20 figure
Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition
We define a correlation function that quantifies the spatial correlation of
single-particle displacements in liquids and amorphous materials. We show for
an equilibrium liquid that this function is related to fluctuations in a bulk
dynamical variable. We evaluate this function using computer simulations of an
equilibrium glass-forming liquid, and show that long range spatial correlations
of displacements emerge and grow on cooling toward the mode coupling critical
temperature
Decoupling of diffusion from structural relaxation and spatial heterogeneity in a supercooled simple liquid
We report a molecular dynamics simulation of a supercooled simple monatomic
glass-forming liquid. It is found that the onset of the supercooled regime
results in formation of distinct domains of slow diffusion which are confined
to the long-lived icosahedrally structured clusters associated with deeper
minima in the energy landscape. As these domains, possessing a low-dimensional
geometry, grow with cooling and percolate below , the critical temperature
of the mode coupling theory, a sharp slowing down of the structural relaxation
relative to diffusion is observed. It is concluded that this latter anomaly
cannot be accounted for by the spatial variation in atomic mobility; instead,
we explain it as a direct result of the configuration-space constraints imposed
by the transient structural correlations. We also conjecture that the observed
tendency for low-dimensional clustering may be regarded as a possible mechanism
of fragility.Comment: To be published in PR
- …
