142 research outputs found

    Contact orderability up to conjugation

    Get PDF
    We study in this paper the remnants of the contact partial order on the orbits of the adjoint action of contactomorphism groups on their Lie algebras. Our main interest is a class of non-compact contact manifolds, called convex at infinity.Comment: 28 pages, 1 figur

    Plane Formation by Synchronous Mobile Robots in the Three Dimensional Euclidean Space

    Full text link
    Creating a swarm of mobile computing entities frequently called robots, agents or sensor nodes, with self-organization ability is a contemporary challenge in distributed computing. Motivated by this, we investigate the plane formation problem that requires a swarm of robots moving in the three dimensional Euclidean space to land on a common plane. The robots are fully synchronous and endowed with visual perception. But they do not have identifiers, nor access to the global coordinate system, nor any means of explicit communication with each other. Though there are plenty of results on the agreement problem for robots in the two dimensional plane, for example, the point formation problem, the pattern formation problem, and so on, this is the first result for robots in the three dimensional space. This paper presents a necessary and sufficient condition for fully-synchronous robots to solve the plane formation problem that does not depend on obliviousness i.e., the availability of local memory at robots. An implication of the result is somewhat counter-intuitive: The robots cannot form a plane from most of the semi-regular polyhedra, while they can form a plane from every regular polyhedron (except a regular icosahedron), whose symmetry is usually considered to be higher than any semi-regular polyhedrdon

    An exact sequence for contact- and symplectic homology

    Full text link
    A symplectic manifold WW with contact type boundary M=WM = \partial W induces a linearization of the contact homology of MM with corresponding linearized contact homology HC(M)HC(M). We establish a Gysin-type exact sequence in which the symplectic homology SH(W)SH(W) of WW maps to HC(M)HC(M), which in turn maps to HC(M)HC(M), by a map of degree -2, which then maps to SH(W)SH(W). Furthermore, we give a description of the degree -2 map in terms of rational holomorphic curves with constrained asymptotic markers, in the symplectization of MM.Comment: Final version. Changes for v2: Proof of main theorem supplemented with detailed discussion of continuation maps. Description of degree -2 map rewritten with emphasis on asymptotic markers. Sec. 5.2 rewritten with emphasis on 0-dim. moduli spaces. Transversality discussion reorganized for clarity (now Remark 9). Various other minor modification

    Intersecting Solitons, Amoeba and Tropical Geometry

    Full text link
    We study generic intersection (or web) of vortices with instantons inside, which is a 1/4 BPS state in the Higgs phase of five-dimensional N=1 supersymmetric U(Nc) gauge theory on R_t \times (C^\ast)^2 \simeq R^{2,1} \times T^2 with Nf=Nc Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (Nf=Nc=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortex charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C^\ast)^2. The Wilson loops in T^2 are related with derivatives of the Ronkin function. The general form of the Kahler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.Comment: 39 pages, 11 figure

    Stein structures: existence and flexibility

    Get PDF
    This survey on the topology of Stein manifolds is an extract from our recent joint book. It is compiled from two short lecture series given by the first author in 2012 at the Institute for Advanced Study, Princeton, and the Alfred Renyi Institute of Mathematics, Budapest.Comment: 29 pages, 11 figure

    Positional Encoding by Robots with Non-Rigid Movements

    Full text link
    Consider a set of autonomous computational entities, called \emph{robots}, operating inside a polygonal enclosure (possibly with holes), that have to perform some collaborative tasks. The boundary of the polygon obstructs both visibility and mobility of a robot. Since the polygon is initially unknown to the robots, the natural approach is to first explore and construct a map of the polygon. For this, the robots need an unlimited amount of persistent memory to store the snapshots taken from different points inside the polygon. However, it has been shown by Di Luna et al. [DISC 2017] that map construction can be done even by oblivious robots by employing a positional encoding strategy where a robot carefully positions itself inside the polygon to encode information in the binary representation of its distance from the closest polygon vertex. Of course, to execute this strategy, it is crucial for the robots to make accurate movements. In this paper, we address the question whether this technique can be implemented even when the movements of the robots are unpredictable in the sense that the robot can be stopped by the adversary during its movement before reaching its destination. However, there exists a constant δ>0\delta > 0, unknown to the robot, such that the robot can always reach its destination if it has to move by no more than δ\delta amount. This model is known in literature as \emph{non-rigid} movement. We give a partial answer to the question in the affirmative by presenting a map construction algorithm for robots with non-rigid movement, but having O(1)O(1) bits of persistent memory and ability to make circular moves

    The symplectic Deligne-Mumford stack associated to a stacky polytope

    Full text link
    We discuss a symplectic counterpart of the theory of stacky fans. First, we define a stacky polytope and construct the symplectic Deligne-Mumford stack associated to the stacky polytope. Then we establish a relation between stacky polytopes and stacky fans: the stack associated to a stacky polytope is equivalent to the stack associated to a stacky fan if the stacky fan corresponds to the stacky polytope.Comment: 20 pages; v2: To appear in Results in Mathematic

    Compactness for Holomorphic Supercurves

    Full text link
    We study the compactness problem for moduli spaces of holomorphic supercurves which, being motivated by supergeometry, are perturbed such as to allow for transversality. We give an explicit construction of limiting objects for sequences of holomorphic supercurves and prove that, in important cases, every such sequence has a convergent subsequence provided that a suitable extension of the classical energy is uniformly bounded. This is a version of Gromov compactness. Finally, we introduce a topology on the moduli spaces enlarged by the limiting objects which makes these spaces compact and metrisable.Comment: 38 page

    Displacement energy of unit disk cotangent bundles

    Full text link
    We give an upper bound of a Hamiltonian displacement energy of a unit disk cotangent bundle DMD^*M in a cotangent bundle TMT^*M, when the base manifold MM is an open Riemannian manifold. Our main result is that the displacement energy is not greater than Cr(M)C r(M), where r(M)r(M) is the inner radius of MM, and CC is a dimensional constant. As an immediate application, we study symplectic embedding problems of unit disk cotangent bundles. Moreover, combined with results in symplectic geometry, our main result shows the existence of short periodic billiard trajectories and short geodesic loops.Comment: Title slightly changed. Close to the version published online in Math Zei

    Deterministic meeting of sniffing agents in the plane

    Full text link
    Two mobile agents, starting at arbitrary, possibly different times from arbitrary locations in the plane, have to meet. Agents are modeled as discs of diameter 1, and meeting occurs when these discs touch. Agents have different labels which are integers from the set of 0 to L-1. Each agent knows L and knows its own label, but not the label of the other agent. Agents are equipped with compasses and have synchronized clocks. They make a series of moves. Each move specifies the direction and the duration of moving. This includes a null move which consists in staying inert for some time, or forever. In a non-null move agents travel at the same constant speed, normalized to 1. We assume that agents have sensors enabling them to estimate the distance from the other agent (defined as the distance between centers of discs), but not the direction towards it. We consider two models of estimation. In both models an agent reads its sensor at the moment of its appearance in the plane and then at the end of each move. This reading (together with the previous ones) determines the decision concerning the next move. In both models the reading of the sensor tells the agent if the other agent is already present. Moreover, in the monotone model, each agent can find out, for any two readings in moments t1 and t2, whether the distance from the other agent at time t1 was smaller, equal or larger than at time t2. In the weaker binary model, each agent can find out, at any reading, whether it is at distance less than \r{ho} or at distance at least \r{ho} from the other agent, for some real \r{ho} > 1 unknown to them. Such distance estimation mechanism can be implemented, e.g., using chemical sensors. Each agent emits some chemical substance (scent), and the sensor of the other agent detects it, i.e., sniffs. The intensity of the scent decreases with the distance.Comment: A preliminary version of this paper appeared in the Proc. 23rd International Colloquium on Structural Information and Communication Complexity (SIROCCO 2016), LNCS 998
    corecore