142 research outputs found
Contact orderability up to conjugation
We study in this paper the remnants of the contact partial order on the
orbits of the adjoint action of contactomorphism groups on their Lie algebras.
Our main interest is a class of non-compact contact manifolds, called convex at
infinity.Comment: 28 pages, 1 figur
Plane Formation by Synchronous Mobile Robots in the Three Dimensional Euclidean Space
Creating a swarm of mobile computing entities frequently called robots,
agents or sensor nodes, with self-organization ability is a contemporary
challenge in distributed computing. Motivated by this, we investigate the plane
formation problem that requires a swarm of robots moving in the three
dimensional Euclidean space to land on a common plane. The robots are fully
synchronous and endowed with visual perception. But they do not have
identifiers, nor access to the global coordinate system, nor any means of
explicit communication with each other. Though there are plenty of results on
the agreement problem for robots in the two dimensional plane, for example, the
point formation problem, the pattern formation problem, and so on, this is the
first result for robots in the three dimensional space. This paper presents a
necessary and sufficient condition for fully-synchronous robots to solve the
plane formation problem that does not depend on obliviousness i.e., the
availability of local memory at robots. An implication of the result is
somewhat counter-intuitive: The robots cannot form a plane from most of the
semi-regular polyhedra, while they can form a plane from every regular
polyhedron (except a regular icosahedron), whose symmetry is usually considered
to be higher than any semi-regular polyhedrdon
An exact sequence for contact- and symplectic homology
A symplectic manifold with contact type boundary induces
a linearization of the contact homology of with corresponding linearized
contact homology . We establish a Gysin-type exact sequence in which the
symplectic homology of maps to , which in turn maps to
, by a map of degree -2, which then maps to . Furthermore, we
give a description of the degree -2 map in terms of rational holomorphic curves
with constrained asymptotic markers, in the symplectization of .Comment: Final version. Changes for v2: Proof of main theorem supplemented
with detailed discussion of continuation maps. Description of degree -2 map
rewritten with emphasis on asymptotic markers. Sec. 5.2 rewritten with
emphasis on 0-dim. moduli spaces. Transversality discussion reorganized for
clarity (now Remark 9). Various other minor modification
Intersecting Solitons, Amoeba and Tropical Geometry
We study generic intersection (or web) of vortices with instantons inside,
which is a 1/4 BPS state in the Higgs phase of five-dimensional N=1
supersymmetric U(Nc) gauge theory on R_t \times (C^\ast)^2 \simeq R^{2,1}
\times T^2 with Nf=Nc Higgs scalars in the fundamental representation. In the
case of the Abelian-Higgs model (Nf=Nc=1), the intersecting vortex sheets can
be beautifully understood in a mathematical framework of amoeba and tropical
geometry, and we propose a dictionary relating solitons and gauge theory to
amoeba and tropical geometry. A projective shape of vortex sheets is described
by the amoeba. Vortex charge density is uniformly distributed among vortex
sheets, and negative contribution to instanton charge density is understood as
the complex Monge-Ampere measure with respect to a plurisubharmonic function on
(C^\ast)^2. The Wilson loops in T^2 are related with derivatives of the Ronkin
function. The general form of the Kahler potential and the asymptotic metric of
the moduli space of a vortex loop are obtained as a by-product. Our discussion
works generally in non-Abelian gauge theories, which suggests a non-Abelian
generalization of the amoeba and tropical geometry.Comment: 39 pages, 11 figure
Stein structures: existence and flexibility
This survey on the topology of Stein manifolds is an extract from our recent
joint book. It is compiled from two short lecture series given by the first
author in 2012 at the Institute for Advanced Study, Princeton, and the Alfred
Renyi Institute of Mathematics, Budapest.Comment: 29 pages, 11 figure
Positional Encoding by Robots with Non-Rigid Movements
Consider a set of autonomous computational entities, called \emph{robots},
operating inside a polygonal enclosure (possibly with holes), that have to
perform some collaborative tasks. The boundary of the polygon obstructs both
visibility and mobility of a robot. Since the polygon is initially unknown to
the robots, the natural approach is to first explore and construct a map of the
polygon. For this, the robots need an unlimited amount of persistent memory to
store the snapshots taken from different points inside the polygon. However, it
has been shown by Di Luna et al. [DISC 2017] that map construction can be done
even by oblivious robots by employing a positional encoding strategy where a
robot carefully positions itself inside the polygon to encode information in
the binary representation of its distance from the closest polygon vertex. Of
course, to execute this strategy, it is crucial for the robots to make accurate
movements. In this paper, we address the question whether this technique can be
implemented even when the movements of the robots are unpredictable in the
sense that the robot can be stopped by the adversary during its movement before
reaching its destination. However, there exists a constant ,
unknown to the robot, such that the robot can always reach its destination if
it has to move by no more than amount. This model is known in
literature as \emph{non-rigid} movement. We give a partial answer to the
question in the affirmative by presenting a map construction algorithm for
robots with non-rigid movement, but having bits of persistent memory and
ability to make circular moves
The symplectic Deligne-Mumford stack associated to a stacky polytope
We discuss a symplectic counterpart of the theory of stacky fans. First, we
define a stacky polytope and construct the symplectic Deligne-Mumford stack
associated to the stacky polytope. Then we establish a relation between stacky
polytopes and stacky fans: the stack associated to a stacky polytope is
equivalent to the stack associated to a stacky fan if the stacky fan
corresponds to the stacky polytope.Comment: 20 pages; v2: To appear in Results in Mathematic
Compactness for Holomorphic Supercurves
We study the compactness problem for moduli spaces of holomorphic supercurves
which, being motivated by supergeometry, are perturbed such as to allow for
transversality. We give an explicit construction of limiting objects for
sequences of holomorphic supercurves and prove that, in important cases, every
such sequence has a convergent subsequence provided that a suitable extension
of the classical energy is uniformly bounded. This is a version of Gromov
compactness. Finally, we introduce a topology on the moduli spaces enlarged by
the limiting objects which makes these spaces compact and metrisable.Comment: 38 page
Displacement energy of unit disk cotangent bundles
We give an upper bound of a Hamiltonian displacement energy of a unit disk
cotangent bundle in a cotangent bundle , when the base manifold
is an open Riemannian manifold. Our main result is that the displacement
energy is not greater than , where is the inner radius of ,
and is a dimensional constant. As an immediate application, we study
symplectic embedding problems of unit disk cotangent bundles. Moreover,
combined with results in symplectic geometry, our main result shows the
existence of short periodic billiard trajectories and short geodesic loops.Comment: Title slightly changed. Close to the version published online in Math
Zei
Deterministic meeting of sniffing agents in the plane
Two mobile agents, starting at arbitrary, possibly different times from
arbitrary locations in the plane, have to meet. Agents are modeled as discs of
diameter 1, and meeting occurs when these discs touch. Agents have different
labels which are integers from the set of 0 to L-1. Each agent knows L and
knows its own label, but not the label of the other agent. Agents are equipped
with compasses and have synchronized clocks. They make a series of moves. Each
move specifies the direction and the duration of moving. This includes a null
move which consists in staying inert for some time, or forever. In a non-null
move agents travel at the same constant speed, normalized to 1. We assume that
agents have sensors enabling them to estimate the distance from the other agent
(defined as the distance between centers of discs), but not the direction
towards it. We consider two models of estimation. In both models an agent reads
its sensor at the moment of its appearance in the plane and then at the end of
each move. This reading (together with the previous ones) determines the
decision concerning the next move. In both models the reading of the sensor
tells the agent if the other agent is already present. Moreover, in the
monotone model, each agent can find out, for any two readings in moments t1 and
t2, whether the distance from the other agent at time t1 was smaller, equal or
larger than at time t2. In the weaker binary model, each agent can find out, at
any reading, whether it is at distance less than \r{ho} or at distance at least
\r{ho} from the other agent, for some real \r{ho} > 1 unknown to them. Such
distance estimation mechanism can be implemented, e.g., using chemical sensors.
Each agent emits some chemical substance (scent), and the sensor of the other
agent detects it, i.e., sniffs. The intensity of the scent decreases with the
distance.Comment: A preliminary version of this paper appeared in the Proc. 23rd
International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2016), LNCS 998
- …
