8,690 research outputs found
Quasi-periodic stability of normally resonant tori
We study quasi-periodic tori under a normal-internal resonance, possibly with
multiple eigenvalues. Two non-degeneracy conditions play a role. The first of
these generalizes invertibility of the Floquet matrix and prevents drift of the
lower dimensional torus. The second condition involves a Kolmogorov-like
variation of the internal frequencies and simultaneously versality of the
Floquet matrix unfolding. We focus on the reversible setting, but our results
carry over to the Hamiltonian and dissipative contexts
Efficient frequency doubler for the soft X-ray SASE FEL at the TESLA Test Facility
This paper describes an effective frequency doubler scheme for SASE free
electron lasers. It consists of an undulator tuned to the first harmonic, a
dispersion section, and a tapered undulator tuned to the second harmonic. The
first stage is a conventional soft X-ray SASE FEL. Its gain is controlled in
such a way that the maximum energy modulation of the electron beam at the exit
is about equal to the local energy spread, but still far away from saturation.
When the electron bunch passes through the dispersion section this energy
modulation leads to effective compression of the particles. Then the bunched
electron beam enters the tapered undulator and produces strong radiation in the
process of coherent deceleration. We demonstrate that a frequency doubler
scheme can be integrated into the SASE FEL at the TESLA Test Facility at DESY,
and will allow to reach 3 nm wavelength with GW-level of output peak power.
This would extend the operating range of the FEL into the so-called water
window and significantly expand the capabilities of the TTF FEL user facility.Comment: 17 pages, 13 figure
Dynamics of the Tippe Top via Routhian Reduction
We consider a tippe top modeled as an eccentric sphere, spinning on a
horizontal table and subject to a sliding friction. Ignoring translational
effects, we show that the system is reducible using a Routhian reduction
technique. The reduced system is a two dimensional system of second order
differential equations, that allows an elegant and compact way to retrieve the
classification of tippe tops in six groups as proposed in [1] according to the
existence and stability type of the steady states.Comment: 16 pages, 7 figures, added reference. Typos corrected and a forgotten
term in de linearized system is adde
Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment
CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission
designed to collect direct data on the elemental composition and individual
energy spectra of cosmic rays. Two instrument suites have been built to be
flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for
the second flight, scheduled for December 2005, was calibrated with electron
and proton beams at CERN. A calibration procedure based on the study of the
longitudinal shower profile is described and preliminary results of the beam
test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th
International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10,
200
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
- …
