626 research outputs found

    Computational and Mathematical Modelling of the EGF Receptor System

    Get PDF
    This chapter gives an overview of computational and mathematical modelling of the EGF receptor system. It begins with a survey of motivations for producing such models, then describes the main approaches that are taken to carrying out such modelling, viz. differential equations and individual-based modelling. Finally, a number of projects that applying modelling and simulation techniques to various aspects of the EGF receptor system are described

    Mechanisms and models of somatic cell reprogramming

    Get PDF
    Whitehead Institute for Biomedical Research (Jerome and Florence Brill Graduate Student Fellowship)National Institutes of Health (U.S.) (US NIH grant RO1-CA087869)National Institutes of Health (U.S.) (US NIH grant R37-CA084198)National Science Foundation (U.S.) (NSF Graduate Research Fellowship)National Institutes of Health (U.S.) ((NIH) Kirschstein National Research Service Award,1 F32 GM099153-01A1)Vertex Pharmaceuticals Incorporated (Vertex Scholar

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    Differential impact of chronic stress along the hippocampal dorsal–ventral axis

    Get PDF
    First published online 06 February 2014Stress impacts differently in distinct brain regions. However, so far few studies have focused on the differential responses triggered by stressful stimuli on the intrinsic functional heterogeneity of the hippocampal axis. In this study, we assessed the functional and structural alterations caused by exposure to a chronic unpredictable stress (CUS) paradigm on the dorsal-ventral axis of the hippocampus. The morphological analysis demonstrated that CUS had opposite outcomes in the structure of the dorsal (DH) and ventral hippocampus (VH): whereas in the DH, stress triggered a volumetric reduction as a result of atrophy of CA3 and CA1 apical dendrites, in the VH there was an increase in hippocampal volume concurrent with the increase of CA3 apical dendrites. In parallel, electrophysiological data revealed that stress led to a decrease in VH LTD. In summary, the present work showed that stress impacts differently on the structure and function of the DH and VH which contributes to better understand the overall spectrum of the central effects of stress.Pinto V and Mota C were supported by Fundacao para a Ciencia e Tecnologia (FCT) grants (SFRH/BPD/69132/2010; SFRH/BD/81881/2011, respectively). This work was supported by an FCT grant (PTDC/SAU-NSC/120590/2010). The authors declare no competing financial interests

    Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design

    Get PDF
    Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite

    HER2 therapy. HER2 (ERBB2): functional diversity from structurally conserved building blocks

    Get PDF
    EGFR-type receptor tyrosine kinases achieve a broad spectrum of cellular responses by utilizing a set of structurally conserved building blocks. Based on available crystal structures and biochemical information, significant new insights have emerged into modes of receptor control, its deregulation in cancer, and the nuances that differentiate the four human receptors. This review gives an overview of current models of the control of receptor activity with a special emphasis on HER2 and HER3

    A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network

    Get PDF
    Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities

    Two additive mechanisms impair the differentiation of 'substrate-selective' p38 inhibitors from classical p38 inhibitors in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The success of anti-TNF biologics for the treatment of rheumatoid arthritis has highlighted the importance of understanding the intracellular pathways that regulate TNF production in the quest for an orally-available small molecule inhibitor. p38 is known to strongly regulate TNF production via MK2. The failure of several p38 inhibitors in the clinic suggests the importance of other downstream pathways in normal cell function. Recent work has described a 'substrate-selective' p38 inhibitor that is able to preferentially block the activity of p38 against one substrate (MK2) versus another (ATF2). Using a combined experimental and computational approach, we have examined this mechanism in greater detail for two p38 substrates, MK2 and ATF2.</p> <p>Results</p> <p>We found that in a dual (MK2 and ATF2) substrate assay, MK2-p38 interaction reduced the activity of p38 against ATF2. We further constructed a detailed kinetic mechanistic model of p38 phosphorylation in the presence of multiple substrates and successfully predicted the performance of classical and so-called 'substrate-selective' p38 inhibitors in the dual substrate assay. Importantly, it was found that excess MK2 results in a stoichiometric effect in which the formation of p38-MK2-inhibitor complex prevents the phosphorylation of ATF2, despite the preference of the compound for the p38-MK2 complex over the p38-ATF2 complex. MK2 and p38 protein expression levels were quantified in U937, Thp-1 and PBMCs and found that [MK2] > [p38].</p> <p>Conclusion</p> <p>Our integrated mechanistic modeling and experimental validation provides an example of how systems biology approaches can be applied to drug discovery and provide a basis for decision-making with limited chemical matter. We find that, given our current understanding, it is unlikely that 'substrate-selective' inhibitors of p38 will work as originally intended when placed in the context of more complex cellular environments, largely due to a stoichiometric excess of MK2 relative to p38.</p

    Regulation of ErbB2 Receptor Status by the Proteasomal DUB POH1

    Get PDF
    Understanding the factors, which control ErbB2 and EGF receptor (EGFR) status in cells is likely to inform future therapeutic approaches directed at these potent oncogenes. ErbB2 is resistant to stimulus-induced degradation and high levels of over-expression can inhibit EGF receptor down-regulation. We now show that for HeLa cells expressing similar numbers of EGFR and ErbB2, EGFR down-regulation is efficient and insensitive to reduction of ErbB2 levels. Deubiquitinating enzymes (DUBs) may extend protein half-lives by rescuing ubiquitinated substrates from proteasomal degradation or from ubiquitin-dependent lysosomal sorting. Using a siRNA library directed at the full complement of human DUBs, we identified POH1 (also known as Rpn11 or PSMD14), a component of the proteasome lid, as a critical DUB controlling the apparent ErbB2 levels. Moreover, the effects on ErbB2 levels can be reproduced by administration of proteasomal inhibitors such as epoxomicin used at maximally tolerated doses. However, the extent of this apparent loss and specificity for ErbB2 versus EGFR could not be accounted for by changes in transcription or degradation rate. Further investigation revealed that cell surface ErbB2 levels are only mildly affected by POH1 knock-down and that the apparent loss can at least partially be explained by the accumulation of higher molecular weight ubiquitinated forms of ErbB2 that are detectable with an extracellular but not intracellular domain directed antibody. We propose that POH1 may deubiquitinate ErbB2 and that this activity is not necessarily coupled to proteasomal degradation
    corecore