3,760 research outputs found

    Response functions in multicomponent Luttinger liquids

    Full text link
    We derive an analytic expression for the zero temperature Fourier transform of the density-density correlation function of a multicomponent Luttinger liquid with different velocities. By employing Schwinger identity and a generalized Feynman identity exact integral expressions are derived, and approximate analytical forms are given for frequencies close to each component singularity. We find power-like singularities and compute the corresponding exponents. Numerical results are shown for the case of three components.Comment: 16 pages, two EPS figure

    Magnetostriction in an array of spin chains under magnetic field

    Full text link
    We consider an array of XX spin-1/2 chains coupled to acoustic phonons and placed in a magnetic field. Treating the phonons in the mean field approximation, we show that this system presents a first order transition as a function of the magnetic field between a partially magnetized distorted state and the fully polarized undistorted state at low temperature. This behavior results from the magnetostriction of the coupled chain system. A dip in the elastic constant of the material near the saturation field along with an anomaly in the magnetic susceptibility is predicted. We also predict the contraction of the material as the magnetic field is reduced (positive magnetostriction) and the reciprocal effect i.e. a decrease of magnetization under applied pressure. At higher temperature, the first order transition is replaced by a crossover. However, the anomalies in the susceptibilities in the system near the saturation field are still present. We discuss the relevance of our analysis in relation to recent experiments on spin-1/2 chain and ladder materials in strong magnetic fields.Comment: 23 pages, Revtex 4, more detailed discussion of the connection with Bose-Einstein condensation. Discussion of long range ordering by interladder exchange, comparison with mean field theory. Some extra references adde

    Spin-orbit coupled Bose-Einstein condensates in a double well

    Full text link
    We study the quantum dynamics of a spin-orbit (SO) coupled Bose-Einstein condensate (BEC) in a double-well potential inspired by the experimental protocol recently developed by NIST group. We focus on the regime where the number of atoms is very large and perform a two-mode approximation. An analytical solution of the two-site Bose-Hubbard-like Hamiltonian is found for several limiting cases, which range from a strong Raman coupling to a strong Josephson coupling, ending with the complete model in the presence of weak nonlinear interactions. Depending on the particular limit, different approaches are chosen: a mapping onto an SU(2) spin problem together with a Holstein-Primakoff transformation in the first two cases and a rotating wave approximation (RWA) when dealing with the complete model. The quantum evolution of the number difference of bosons with equal or different spin between the two wells is investigated in a wide range of parameters; finally the corresponding total atomic current and the spin current are computed. We show a spin Josephson effect which could be detected in experiments and employed to build up realistic devices.Comment: 18 page

    Incompressible states of a two-component Fermi gas in a double-well optical lattice

    Full text link
    We propose a scheme to investigate the effect of frustration on the magnetic phase transitions of cold atoms confined in an optical lattice. We also demonstrate how to get two-leg spin ladders with frustrated spin-exchange coupling which display a phase transition from a spin liquid to a fully incompressible state. Various experimental quantities are further analyzed for describing this phase.Comment: 10 pages, 7 figures. Published in Phys. Rev.

    Electrically Controlled Pumping of Spin Currents in Topological Insulators

    Full text link
    Pure spin currents are shown to be generated by an electrically controlled quantum pump applied at the edges of a topological insulator. The electric rather than the more conventional magnetic control offers several advantages and avoids, in particular, the necessity of delicate control of magnetization dynamics over tiny regions. The pump is implemented by pinching the sample at two quantum point contacts and phase modulating two external gate voltages between them. The spin current is generated for the full range of parameters. On the other hand, pumping via amplitude modulation of the inter-boundary couplings generates both charge and spin currents, with a pure charge current appearing only for special values of the parameters for which the Bohm-Aharonov flux takes integer values. Our setup can therefore serve to fingerprint the helical nature of the edges states with the zeros of the pumped spin and charge currents occurring at distinct universal locations where the Fabry-Perot or the Aharonov-Bohm phases take integer values.Comment: 5 pages, 5figure

    Fractional quantization of the topological charge pumping in a one-dimensional superlattice

    Full text link
    A one-dimensional quantum charge pump transfers a quantized charge in each pumping cycle. This quantization is topologically robust being analogous to the quantum Hall effect. The charge transferred in a fraction of the pumping period is instead generally unquantized. We show, however, that with specific symmetries in parameter space the charge transferred at well-defined fractions of the pumping period is quantized as integer fractions of the Chern number. We illustrate this in a one-dimensional Harper-Hofstadter model and show that the fractional quantization of the topological charge pumping is independent of the specific boundary conditions taken into account. We further discuss the relevance of this phenomenon for cold atomic gases in optical superlattices.Comment: 8 pages, 7 figures, new material adde

    Modification of the Bloch law in ferromagnetic nanostructures

    Full text link
    The temperature dependence of magnetization in ferromagnetic nanostructures (e.g., nanoparticles or nanoclusters) is usually analyzed by means of an empirical extension of the Bloch law sufficiently flexible for a good fitting to the observed data and indicates a strong softening of magnetic coupling compared to the bulk material. We analytically derive a microscopic generalization of the Bloch law for the Heisenberg spin model which takes into account the effects of size, shape and various surface boundary conditions. The result establishes explicit connection to the microscopic parameters and differs significantly from the existing description. In particular, we show with a specific example that the latter may be misleading and grossly overestimates magnetic softening in nanoparticles. It becomes clear why the usual T3/2T^{3/2} dependence appears to be valid in some nanostructures, while large deviations are a general rule. We demonstrate that combination of geometrical characteristics and coupling to environment can be used to efficiently control magnetization and, in particular, to reach a magnetization higher than in the bulk material.Comment: 7 pages, 4 figure

    Nonequilibrium properties of an atomic quantum dot coupled to a Bose-Einstein condensate

    Full text link
    We study nonequilibrium properties of an atomic quantum dot (AQD) coupled to a Bose-Einstein condensate (BEC) within Keldysh-Green's function formalism when the AQD level is varied harmonically in time. Nonequilibrium features in the AQD energy absorption spectrum are the side peaks that develop as an effect of photon absorption and emission. We show that atoms can be efficiently transferred from the BEC into the AQD for the parameter regime of current experiments with cold atoms.Comment: 8 pages, 2 figures, to appear in the special issue "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases" of The European Physical Journal - Special Topic

    Impurity effects on Fabry-Perot physics of ballistic carbon nanotubes

    Full text link
    We present a theoretical model accounting for the anomalous Fabry-Perot pattern observed in the ballistic conductance of a single-wall carbon nanotubes. Using the scattering field theory, it is shown that the presence of a limited number of impurities along the nanotube can be identified by a measurement of the conductance and their position determined. Impurities can be made active or silent depending on the interaction with the substrate via the back-gate. The conceptual steps for designing a bio-molecules detector are briefly discussed.Comment: 4 pages, 4 figure

    Interaction effects in non-equilibrium transport properties of a four-terminal topological corner junction

    Full text link
    We study the transport properties of a four-terminal corner junction made by etching a two- dimensional topological insulator to form a quantum point contact (QPC). The QPC geometry enables inter-boundary tunneling processes allowing for the coupling among states with different helicity, while the tight confinement in the QPC region activates charging effects leading to the Coulomb blockade physics. Peculiar signatures of these effects are theoretically investigated using a scattering field theory modified to take into account the electron-electron interaction within a self- consistent mean-field approach. The current-voltage characteristics and the current fluctuations (noise) are derived beyond the linear response regime. Universal aspects of the thermal noise of the corner junction made of helical matter are also discussed.Comment: 13 pages, 8 figure
    corecore