2,130 research outputs found
Child Labor Cultural Norms and Practices: Brazil
Rebecca Ciullo's & Carrie A. Picardi's poster about child labor Brazil
Reality Check: Today’s Child Labor Issues in U.S. Tobacco Farming
Rebecca Ciullo's & Carrie A. Picardi's poster about child labor issues in U.S. tobacco farming
The OLYMPUS Internal Hydrogen Target
An internal hydrogen target system was developed for the OLYMPUS experiment
at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled,
tubular cell within an aluminum scattering chamber. Hydrogen entered at the
center of the cell and exited through the ends, where it was removed from the
beamline by a multistage pumping system. A cryogenic coldhead cooled the target
cell to counteract heating from the beam and increase the density of hydrogen
in the target. A fixed collimator protected the cell from synchrotron radiation
and the beam halo. A series of wakefield suppressors reduced heating from beam
wakefields. The target system was installed within the DORIS storage ring and
was successfully operated during the course of the OLYMPUS experiment in 2012.
Information on the design, fabrication, and performance of the target system is
reported.Comment: 9 pages, 13 figure
Network Awareness of P2P Live Streaming Applications
Early P2P-TV systems have already attracted millions of users, and many new commercial solutions are entering this market. Little information is however available about how these systems work. In this paper we present large scale sets of experiments to compare three of the most successful P2P-TV systems, namely PPLive, SopCast and TVAnts. Our goal is to assess what level of "network awareness" has been embedded in the applications, i.e., what parameters mainly drive the peer selection and data exchange. By using a general framework that can be extended to other systems and metrics, we show that all applications largely base their choices on the peer bandwidth, i.e., they prefer high-bandwidth users, which is rather intuitive. Moreover, TVAnts and PPLive exhibits also a preference to exchange data among peers in the same autonomous system the peer belongs to. However, no evidence about preference versus peers in the same subnet or that are closer to the considered peer emerges. We believe that next-generation P2P live streaming applications definitively need to improve the level of network-awareness, so to better localize the traffic in the network and thus increase their network-friendliness as wel
Label-based Optimization of Dense Disparity Estimation for Robotic Single Incision Abdominal Surgery
Minimally invasive surgical techniques have led to novel approaches such as Single Incision Laparoscopic Surgery (SILS), which allows the reduction of post-operative infections and patient recovery time, improving surgical outcomes. However, the new techniques pose also new challenges to surgeons: during SILS, visualization of the surgical field is limited by the endoscope field of view, and the access to the target area is limited by the fact that instruments have to be inserted through a single port.
In this context, intra-operative navigation and augmented reality based on pre-operative images have the potential to enhance SILS procedures by providing the information necessary to increase the intervention accuracy and safety. Problems arise when structures of interest change their pose or deform with respect to pre-operative planning, as usually happens in soft tissue abdominal surgery. This requires online estimation of the deformations to correct the pre-operative plan, which can be done, for example, through methods of depth estimation from stereo endoscopic images (3D reconstruction). The denser the reconstruction, the more accurate the deformation identification can be.
This work presents an algorithm for 3D reconstruction of soft tissue, focusing on the refinement of the disparity map in order to obtain an accurate and dense point map. This algorithm is part of an assistive system for intra-operative guidance and safety supervision for robotic abdominal SILS .
Results show that comparing our method with state-of-the-art CPU implementations, the percentage of valid pixel obtained with our method is 24% higher while providing comparable accuracy. Future research will focus on the development of a real-time implementation of the proposed algorithm, potentially based on a hybrid CPU-GPU processing framework
Network Awareness of P2P Live Streaming Applications: A Measurement Study
Abstract: Early P2P-TV systems have already attracted millions of users, and many new commercial solutions are entering this market. Little information is however available about how these systems work, due to their closed and proprietary design. In this paper, we present large scale experiments to compare three of the most successful P2P-TV systems, namely PPLive, SopCast and TVAnts. Our goal is to assess what level of "network awareness" has been embedded in the applications. We first define a general framework to quantify which network layer parameters leverage application choices, i.e., what parameters mainly drive the peer selection and data exchange. We then apply the methodology to a large dataset, collected during a number of experiments where we deployed about 40 peers in several European countries. From analysis of the dataset, we observe that TVAnts and PPLive exhibit a mild preference to exchange data among peers in the same autonomous system the peer belongs to, while this clustering effect is less intense in SopCast. However, no preference versus country, subnet or hop count is shown. Therefore, we believe that next-generation P2P live streaming applications definitively need to improve the level of network-awareness, so to better localize the traffic in the network and thus increase their network-friendliness as well
Measuring the Polarization of a Rapidly Precessing Deuteron Beam
This paper describes a time-marking system that enables a measurement of the
in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in
the Cooler Synchrotron (COSY) at the Forschungszentrum J\"ulich. The clock time
of each polarimeter event is used to unfold the 120-kHz spin precession and
assign events to bins according to the direction of the horizontal
polarization. After accumulation for one or more seconds, the down-up
scattering asymmetry can be calculated for each direction and matched to a
sinusoidal function whose magnitude is proportional to the horizontal
polarization. This requires prior knowledge of the spin tune or polarization
precession rate. An initial estimate is refined by re-sorting the events as the
spin tune is adjusted across a narrow range and searching for the maximum
polarization magnitude. The result is biased toward polarization values that
are too large, in part because of statistical fluctuations but also because
sinusoidal fits to even random data will produce sizeable magnitudes when the
phase is left free to vary. An analysis procedure is described that matches the
time dependence of the horizontal polarization to templates based on
emittance-driven polarization loss while correcting for the positive bias. This
information will be used to study ways to extend the horizontal polarization
lifetime by correcting spin tune spread using ring sextupole fields and thereby
to support the feasibility of searching for an intrinsic electric dipole moment
using polarized beams in a storage ring. This paper is a combined effort of the
Storage Ring EDM Collaboration and the JEDI Collaboration.Comment: 28 pages, 15 figures, prepared for Physical Review ST - Accelerators
and Beam
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
- …
