254 research outputs found
Anaphase B.
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical "modules" that cooperate to mediate pole-pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation
Modeling actin filament reorganization in endothelial cells subjected to cyclic stretch
Hemodynamic forces affect endothelial cell morphology and function. In particular, circumferential cyclic stretch of blood vessels, due to pressure changes during the cardiac cycle, is known to affect the endothelial cell shape, mediating the alignment of the cells in the direction perpendicular to stretch. This change in cell shape proceeds a drastic reorganization at the internal level. The cellular scaffolding, mainly composed of actin filaments, reorganize in the direction which later becomes the cell's long axis. How this external mechanical stimulus is 'sensed' and transduced into the cell is still unknown. Here, we develop a mathematical model depicting the dynamics of actin filaments, and the influence of the cyclic stretch of the substratum based on the experimental evidence that external stimuli may be transduced inside the cell via transmembrane proteins which are coupled with actin filaments on the cytoplasmic side. Based on this view, we investigate two approaches describing the formulation of the transduction mechanisms involving the coupling between filaments and the membrane proteins. As a result, we find that the mechanical stimulus could cause the experimentally observed reorganization of the entire cytoskeleton simply by altering the dynamics of the filaments connected with the integral membrane proteins, as described in our model. Comparison of our results with previous studies of cytoskeletal dynamics reveals that the cytoskeleton, which, in the absence of the effect of stretch would maintain its isotropic distribution, slowly aligns with the precise direction set by the external stimulus. It is found that even a feeble stimulus, coupled with a strong internal dynamics, is sufficient to align actin filaments perpendicular to the direction of stretc
Recommended from our members
Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments.
Sensory cilia are assembled and maintained by kinesin-2-dependent intraflagellar transport (IFT). We investigated whether two Caenorhabditis elegans α- and β-tubulin isotypes, identified through mutants that lack their cilium distal segments, are delivered to their assembly sites by IFT. Mutations in conserved residues in both tubulins destabilize distal singlet microtubules. One isotype, TBB-4, assembles into microtubules at the tips of the axoneme core and distal segments, where the microtubule tip tracker EB1 is found, and localizes all along the cilium, whereas the other, TBA-5, concentrates in distal singlets. IFT assays, fluorescence recovery after photobleaching analysis and modelling indicate that the continual transport of sub-stoichiometric numbers of these tubulin subunits by the IFT machinery can maintain sensory cilia at their steady-state length
Modellierung der Reorientierung des Actin-Zytoskelettes in Endothelzellen unter dem Einfluß von fluß-induzierten Scherspannungen
Mathematical modelling of anisotropy in fibrous connective tissue
We present two modelling frameworks for studying dynamic anistropy in connective tissue, motivated by the problem of fibre alignment in wound healing. The first model is a system of partial differential equations operating on a macroscopic scale. We show that a model consisting of a single extracellular matrix material aligned by fibroblasts via flux and stress exhibits behaviour that is incompatible with experimental observations. We extend the model to two matrix types and show that the results of this extended model are robust and consistent with experiment. The second model represents cells as discrete objects in a continuum of ECM. We show that this model predicts patterns of alignment on macroscopic length scales that are lost in a continuum model of the cell population
Mitotic force generators and chromosome segregation
The mitotic spindle uses dynamic microtubules and mitotic motors to generate the pico-Newton scale forces that are needed to drive the mitotic movements that underlie chromosome capture, alignment and segregation. Here, we consider the biophysical and molecular basis of force-generation for chromosome movements in the spindle, and, with reference to the Drosophila embryo mitotic spindle, we briefly discuss how mathematical modeling can complement experimental analysis to illuminate the mechanisms of chromosome-to-pole motility during anaphase A and spindle elongation during anaphase B
Publishing and sharing multi-dimensional image data with OMERO
Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org
Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states
The dynamic behavior of homotetrameric kinesin-5 during mitosis is poorly understood. Kinesin-5 may function only by binding, cross-linking, and sliding adjacent spindle microtubules (MTs), or, alternatively, it may bind to a stable “spindle matrix” to generate mitotic movements. We created transgenic Drosophila melanogaster expressing fluorescent kinesin-5, KLP61F-GFP, in a klp61f mutant background, where it rescues mitosis and viability. KLP61F-GFP localizes to interpolar MT bundles, half spindles, and asters, and is enriched around spindle poles. In fluorescence recovery after photobleaching experiments, KLP61F-GFP displays dynamic mobility similar to tubulin, which is inconsistent with a substantial static pool of kinesin-5. The data conform to a reaction–diffusion model in which most KLP61F is bound to spindle MTs, with the remainder diffusing freely. KLP61F appears to transiently bind MTs, moving short distances along them before detaching. Thus, kinesin-5 motors can function by cross-linking and sliding adjacent spindle MTs without the need for a static spindle matrix
Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope
The lamin-B nuclear envelope stabilizes spindle microtubules by keeping the competitive motility of opposing-force kinesins in check
- …
