1,321 research outputs found

    Positive selection in the adhesion domain of Mus sperm Adam genes through gene duplications and function-driven gene complex formations

    Get PDF
    Background: Sperm and testes-expressed Adam genes have been shown to undergo bouts of positive selection in mammals. Despite the pervasiveness of positive selection signals, it is unclear what has driven such selective bouts. The fact that only sperm surface Adam genes show signals of positive selection within their adhesion domain has led to speculation that selection might be driven by species-specific adaptations to fertilization or sperm competition. Alternatively, duplications and neofunctionalization of Adam sperm surface genes, particularly as it is now understood in rodents, might have contributed to an acceleration of evolutionary rates and possibly adaptive diversification. Results: Here we sequenced and conducted tests of selection within the adhesion domain of sixteen known sperm-surface Adam genes among five species of the Mus genus. We find evidence of positive selection associated with all six Adam genes known to interact to form functional complexes on Mus sperm. A subset of these complex-forming sperm genes also displayed accelerated branch evolution with Adam5 evolving under positive selection. In contrast to our previous findings in primates, selective bouts within Mus sperm Adams showed no associations to proxies of sperm competition. Expanded phylogenetic analysis including sequence data from other placental mammals allowed us to uncover ancient and recent episodes of adaptive evolution. Conclusions: The prevailing signals of rapid divergence and positive selection detected within the adhesion domain of interacting sperm Adams is driven by duplications and potential neofunctionalizations that are in some cases ancient (Adams 2, 3 and 5) or more recent (Adams 1b, 4b and 6)

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Upward migration of Vesuvius magma chamber over the past 20 thousand years

    No full text
    International audienceForecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano1,2. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16km (refs 3– 7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8–9km depth8, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7–8km to 3–4km depth between the AD 79 (Pompeii) and AD 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago9 and the 1944 Vesuvius eruption7 are included, the total upward migration of the reservoir amounts to 9–11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation10 or volcano spreading11. Reservoir migration, and the possible influence on feeding rates12, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius
    corecore