1,190 research outputs found
Proof-Pattern Recognition and Lemma Discovery in ACL2
We present a novel technique for combining statistical machine learning for
proof-pattern recognition with symbolic methods for lemma discovery. The
resulting tool, ACL2(ml), gathers proof statistics and uses statistical
pattern-recognition to pre-processes data from libraries, and then suggests
auxiliary lemmas in new proofs by analogy with already seen examples. This
paper presents the implementation of ACL2(ml) alongside theoretical
descriptions of the proof-pattern recognition and lemma discovery methods
involved in it
Band Mapping in One-Step Photoemission Theory: Multi-Bloch-Wave Structure of Final States and Interference Effects
A novel Bloch-waves based one-step theory of photoemission is developed
within the augmented plane wave formalism. Implications of multi-Bloch-wave
structure of photoelectron final states for band mapping are established.
Interference between Bloch components of initial and final states leads to
prominent spectral features with characteristic frequency dispersion
experimentally observed in VSe_2 and TiTe_2. Interference effects together with
a non-free-electron nature of final states strongly limit the applicability of
the common direct transitions band mapping approach, making the tool of
one-step analysis indispensable.Comment: 4 jpg figure
Understanding Microbial Divisions of Labor
Divisions of labor are ubiquitous in nature and can be found at nearly every level of biological organization, from the individuals of a shared society to the cells of a single multicellular organism. Many different types of microbes have also evolved a division of labor among its colony members. Here we review several examples of microbial divisions of labor, including cases from both multicellular and unicellular microbes. We first discuss evolutionary arguments, derived from kin selection, that allow divisions of labor to be maintained in the face of non-cooperative cheater cells. Next we examine the widespread natural variation within species in their expression of divisions of labor and compare this to the idea of optimal caste ratios in social insects. We highlight gaps in our understanding of microbial caste ratios and argue for a shift in emphasis from understanding the maintenance of divisions of labor, generally, to instead focusing on its specific ecological benefits for microbial genotypes and colonies. Thus, in addition to the canonical divisions of labor between, e.g., reproductive and vegetative tasks, we may also anticipate divisions of labor to evolve to reduce the costly production of secondary metabolites or secreted enzymes, ideas we consider in the context of streptomycetes. The study of microbial divisions of labor offers opportunities for new experimental and molecular insights across both well-studied and novel model systems
Strictly One-Dimensional Electron System in Au Chains on Ge(001) Revealed By Photoelectron K-Space Mapping
Atomic nanowires formed by Au on Ge(001) are scrutinized for the band
topology of the conduction electron system by k-resolved photoemission. Two
metallic electron pockets are observed. Their Fermi surface sheets form
straight lines without undulations perpendicular to the chains within
experimental uncertainty. The electrons hence emerge as strictly confined to
one dimension. Moreover, the system is stable against a Peierls distortion down
to 10 K, lending itself for studies of the spectral function. Indications for
unusually low spectral weight at the chemical potential are discussed.Comment: 4 pages, 4 figures - revised version with added Fig. 2e) and
additional reference
Інвестиційне кредитування переробних підприємств АПК банківськими установами
Метою статті є аналіз динаміки інвестиційного кредитування банківськими установами переробних підприємств агропромислового комплексу. Під час проведення дослідження були використані аналітичний, статистико – економічний, графічний, порівняльний методи та метод системного аналізу
Your Proof Fails? Testing Helps to Find the Reason
Applying deductive verification to formally prove that a program respects its
formal specification is a very complex and time-consuming task due in
particular to the lack of feedback in case of proof failures. Along with a
non-compliance between the code and its specification (due to an error in at
least one of them), possible reasons of a proof failure include a missing or
too weak specification for a called function or a loop, and lack of time or
simply incapacity of the prover to finish a particular proof. This work
proposes a new methodology where test generation helps to identify the reason
of a proof failure and to exhibit a counter-example clearly illustrating the
issue. We describe how to transform an annotated C program into C code suitable
for testing and illustrate the benefits of the method on comprehensive
examples. The method has been implemented in STADY, a plugin of the software
analysis platform FRAMA-C. Initial experiments show that detecting
non-compliances and contract weaknesses allows to precisely diagnose most proof
failures.Comment: 11 pages, 10 figure
High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition
We have studied the electronic structure and charge ordering (Verwey)
transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the
enhanced probing depth and the use of different surface preparations we are
able to distinguish surface and volume effects in the spectra. The pseudogap
behavior of the intrinsic spectra and its temperature dependence give evidence
for the existence of strongly bound small polarons consistent with both dc and
optical conductivity. Together with other recent structural and theoretical
results our findings support a picture in which the Verwey transition contains
elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb
interaction
Unoccupied Band Structure of NbSe2 by Very-Low-Energy Electron Diffraction: Experiment and Theory
A combined experimental and theoretical study of very-low-energy electron
diffraction at the (0001) surface of 2H-NbSe2 is presented. Electron
transmission spectra have been measured for energies up to 50 eV above the
Fermi level with k|| varying along the GammaK line of the Brillouin zone. Ab
initio calculations of the spectra have been performed with the extended linear
augmented plane wave k-p method. The experimental spectra are interpreted in
terms of three-dimensional one-electron band structure. Special attention is
paid to the quasi-particle lifetimes: by comparing the broadening of the
spectral structures in the experimental and calculated spectra the energy
dependence of the optical potential Vi is determined. A sharp increase of Vi at
20 eV is detected, which is associated with a plasmon peak in the
Im(-1/epsilon) function. Furthermore, the electron energy loss spectrum and the
reflectivity of NbSe2 are calculated ab initio and compared with optical
experiments. The obtained information on the dispersions and lifetimes of the
unoccupied states is important for photoemission studies of the 3D band
structure of the valence band.Comment: 17 pages, 11 Postscript figures, submitted to Phys. Rev.
- …
