6,156 research outputs found
Evaluation of the application of ERTS-1 data to the regional land use planning process
The author has identified the following significant results. Employing simple and economical extraction methods, ERTS can provide valuable data to the planners at the state or regional level with a frequency never before possible. Interactive computer methods of working directly with ERTS digital information show much promise for providing land use information at a more specific level, since the data format production rate of ERTS justifies improved methods of analysis
Rancière and the poetics of the social sciences
This article reviews the significance of Jacques Rancière’s work for methodological debates in the social sciences, and education specifically. It explores the implications of framing methodology as an aesthetic endeavour, rather than as the applied technique of research. What is at stake in this distinction is the means by which research intervenes in social order and how it assumes political significance, with Rancière arguing against a notion of science as the other of ideology. Rancière’s argument for a democratic research practice organised around a ‘method of equality’ is situated in relation to openly ideological’ feminist ethnography. The implications of Rancière’s work for investigating affect in academic discourse and subjectification in education are reviewed in the conclusion
The Ljapunov-Schmidt reduction for some critical problems
This is a survey about the application of the Ljapunov-Schmidt reduction for
some critical problems
Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group.
BackgroundNew prognostic markers are needed to identify patients with Ewing sarcoma (EWS) and osteosarcoma unlikely to benefit from standard therapy. We describe the incidence and association with outcome of circulating tumour DNA (ctDNA) using next-generation sequencing (NGS) assays.MethodsA NGS hybrid capture assay and an ultra-low-pass whole-genome sequencing assay were used to detect ctDNA in banked plasma from patients with EWS and osteosarcoma, respectively. Patients were coded as positive or negative for ctDNA and tested for association with clinical features and outcome.ResultsThe analytic cohort included 94 patients with EWS (82% from initial diagnosis) and 72 patients with primary localised osteosarcoma (100% from initial diagnosis). ctDNA was detectable in 53% and 57% of newly diagnosed patients with EWS and osteosarcoma, respectively. Among patients with newly diagnosed localised EWS, detectable ctDNA was associated with inferior 3-year event-free survival (48.6% vs. 82.1%; p = 0.006) and overall survival (79.8% vs. 92.6%; p = 0.01). In both EWS and osteosarcoma, risk of event and death increased with ctDNA levels.ConclusionsNGS assays agnostic of primary tumour sequencing results detect ctDNA in half of the plasma samples from patients with newly diagnosed EWS and osteosarcoma. Detectable ctDNA is associated with inferior outcomes
Dvoretzky type theorems for multivariate polynomials and sections of convex bodies
In this paper we prove the Gromov--Milman conjecture (the Dvoretzky type
theorem) for homogeneous polynomials on , and improve bounds on
the number in the analogous conjecture for odd degrees (this case
is known as the Birch theorem) and complex polynomials. We also consider a
stronger conjecture on the homogeneous polynomial fields in the canonical
bundle over real and complex Grassmannians. This conjecture is much stronger
and false in general, but it is proved in the cases of (for 's of
certain type), odd , and the complex Grassmannian (for odd and even and
any ). Corollaries for the John ellipsoid of projections or sections of a
convex body are deduced from the case of the polynomial field conjecture
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.5 Degree Angular Scales Near the Star Gamma Ursae Minoris
We present results from a four frequency observation of a 6 x 0.6 degree
strip of the sky centered near the star Gamma Ursae Minoris during the fourth
flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was
made with a 1.4 degree peak-to-peak sinusoidal chop in all bands. The FWHM beam
sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9,
and 14 cm-1. During this observation significant correlated structure was
observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the
GUM region during the second and third flights of MAX. The frequency spectrum
is consistent with CMB and inconsistent with thermal emission from interstellar
dust. The extrapolated amplitudes of synchrotron and free-free emission are too
small to account for the amplitude of the observed structure. If all of the
structure is attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values of
DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8
(+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and
lower limits), respectively.Comment: 16 pages, postscrip
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis
We present results from two four-frequency observations centered near the
stars Sigma Hercules and Iota Draconis during the fourth flight of the
Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x
0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in
all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a
0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures
were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are
inconsistent with thermal emission from known interstellar dust populations.
The extrapolated amplitudes of synchrotron and free-free emission are too small
to account for the amplitude of the observed structures. If the observed
structures are attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values are
DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB =
(3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and
lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure
Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations
We use the zero-temperature random-field Ising model to study hysteretic
behavior at first-order phase transitions. Sweeping the external field through
zero, the model exhibits hysteresis, the return-point memory effect, and
avalanche fluctuations. There is a critical value of disorder at which a jump
in the magnetization (corresponding to an infinite avalanche) first occurs. We
study the universal behavior at this critical point using mean-field theory,
and also present preliminary results of numerical simulations in three
dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
Nucleation in Systems with Elastic Forces
Systems with long-range interactions when quenced into a metastable state
near the pseudo-spinodal exhibit nucleation processes that are quite different
from the classical nucleation seen near the coexistence curve. In systems with
long-range elastic forces the description of the nucleation process can be
quite subtle due to the presence of bulk/interface elastic compatibility
constraints. We analyze the nucleation process in a simple 2d model with
elastic forces and show that the nucleation process generates critical droplets
with a different structure than the stable phase. This has implications for
nucleation in many crystal-crystal transitions and the structure of the final
state
Optical binding of particles with or without the presence of a flat dielectric surface
Optical fields can induce forces between microscopic objects, thus giving
rise to new structures of matter. We study theoretically these optical forces
between two spheres, either isolated in water, or in presence of a flat
dielectric surface. We observe different behavior in the binding force between
particles at large and at small distances (in comparison with the wavelength)
from each other. This is due to the great contribution of evanescent waves at
short distances. We analyze how the optical binding depends of the size of the
particles, the material composing them, the wavelength and, above all, on the
polarization of the incident beam. We also show that depending on the
polarization, the force between small particles at small distances changes its
sign. Finally, the presence of a substrate surface is analyzed showing that it
only slightly changes the magnitudes of the forces, but not their qualitative
nature, except when one employs total internal reflection, case in which the
particles are induced to move together along the surface.Comment: 8 pages, 9 figures, and 1 tabl
- …
