180 research outputs found
Substitution of Re7+ into CaMnO3: an efficient free electron generation dopant for tuning of thermoelectric properties.
Highly dense CaMn1-xRexO3 (0 ≤ x ≤ 0.04) samples were prepared by solid-state synthesis. The effect of Re doping was assessed by the characterisation of crystal structure, oxygen content, and electrical and thermal transport properties. The oxidation state of the substituted Re was determined by X-ray absorption near edge spectra to be Re7+, and led to expansion of the lattice and an increase in electron carrier concentration due to the formation of Mn3+. The thermal behaviour of the electrical conductivity and the thermopower over a wide temperature range allowed identification of different conduction mechanisms: (1) below 110 K, 3D variable range hopping, (2) between 110 and 650 K, small polaron transport, and (3) above 650 K, activation of carriers over a mobility edge. Evaluation of the power factor expected for different dopant oxidation states as a function of dopant concentration shows that the doping strategy using a heavy heptavalent ion allows accessibility of the peak power factor at lower dopant concentrations, lowering the amount of non-ionised impurities, and therefore improves the electronic substitution efficiency, the ratio of activated carriers over the nominal doping concentration, compared to previously studied dopants. An increased power factor and a reduced lattice thermal conductivity are obtained with a peak figure of merit ZT = 0.16(3) at 947 K for CaMn0.98Re0.02O3. This is an approximately two-fold increase compared to undoped CaMnO3, and is comparable to the highest values reported for highly dense B-site doped CaMnO3
The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts
© 2016 The Author(s) Published by the Royal Society. All rights reserved.The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer-Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3-xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3-xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3-xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-Time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature
Phase Stability Control of Interstitial Oxide Ion Conductivity in the La1+xSr1-xGa3O7+x/2 Melilite Family
Vibrational properties of hexagonal LiBC: Infrared and Raman spectroscopy
The paper presents infrared reflectivity and micro-Raman scattering spectra
of LiBC powder pellets. The experiment allowed assignment of frequencies of all
infrared and Raman active zone center modes. Results are compared with
available ab-initio calculations; prediction of large Born effective charges on
the nodes of B-C graphene sheets is confirmed.Comment: 4 pages, 5 figures (change: Fig 2 replaced
Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells
Electrode materials for intermediate temperature (500–700 ∘C) solid oxide fuel cells require electrical and mechanical stability to maintain performance during the cell lifetime. This has proven difficult to achieve for many candidate cathode materials and their derivatives with good transport and electrocatalytic properties because of reactivity towards cell components, and the fuels and oxidants. Here we present Ba0.5Sr0.5(Co0.7Fe0.3)0.6875W0.3125O3−δ (BSCFW), a self-assembled composite prepared through simple solid state synthesis, consisting of B-site cation ordered double perovskite and disordered single perovskite oxide phases, as a candidate cathode material. These phases interact by dynamic compositional change at the operating temperature, promoting both chemical stability through the increased amount of W in the catalytically active single perovskite provided from the W-reservoir double perovskite, and microstructural stability through reduced sintering of the supported catalytically active phase. This interactive catalyst-support system enabled stable high electrochemical activity through the synergic integration of the distinct properties of the two phases
Interpopulation crosses, inheritance study, and genetic variability in the brown planthopper complex, Nilaparvata lugens (Homoptera: Delphacidae)
Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F(1) and F(2) generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi (110) and Gpi (120), whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi (100) and Gpi (90) . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools
Steam reforming on transition-metal carbides from density-functional theory
A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2)
on early transition-metal carbides (TMC's) is performed by means of
density-functional theory calculations. The set of considered surfaces includes
the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC,
VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces.
It is found that carbides provide a wide spectrum of reactivities towards the
steam reforming reaction, from too reactive via suitable to too inert. The
reactivity is discussed in terms of the electronic structure of the clean
surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated
alpha-Mo_2C(100) surfaces, are identified as promising steam reforming
catalysts. These findings suggest that carbides provide a playground for
reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell–APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories
Cation vacancy order in the K<sub>0.8+<i>x</i></sub>Fe<sub>1.6-<i>y</i></sub>Se<sub>2</sub> system: Five-fold cell expansion accommodates 20% tetrahedral vacancies
Ordering of the tetrahedral site vacancies in two crystals of refined
compositions K0.93(1)Fe1.52(1)Se2 and K0.862(3)Fe1.563(4)Se2 produces a
fivefold expansion of the parent ThCr2Si2 unit cell in the ab plane which can
accommodate 20% vacancies on a single site within the square FeSe layer. The
iron charge state is maintained close to +2 by coupling of the level of alkali
metal and iron vacancies, producing a potential doping mechanism which can
operate at both average and local structure levels
Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu-Al2O3 and Co-Al2O3 catalysts in water
The production of cyclopentanone derivatives from 5-hydroxymethylfurfural (HMF) using non-noble metal based catalysts is reported for the first time. Five different mixed oxides containing Ni, Cu, Co, Zn and Mg phases on an Al-rich amorphous support were prepared and characterised (XRD, ICP, SEM, TEM, H2-TPR, NH3/CO2-TPD and N2 sorption). The synthesised materials resulted in well-dispersed high metal loadings in a mesoporous network, exhibiting acid/base properties. The catalytic performance was tested in a batch stirred reactor under H2 pressure (20–50 bar) in the range T = 140–180 °C. The Cu–Al2O3 and the Co–Al2O3 catalysts showed a highly selective production of 3-hydroxymethylcyclopentanone (HCPN, 86%) and 3-hydroxymethylcyclopentanol (HCPL, 94%), respectively. A plausible reaction mechanism is proposed, clarifying the role of the reduced metal phases and the acid/basic sites on the main conversion pathways. Both Cu–Al2O3 and Co–Al2O3 catalysts showed a loss of activity after the first run, which can be reversed by a regeneration treatment. The results establish an efficient catalytic route for the production of the diol HCPL (reported for the first time) and the ketone HCPN from bio-derived HMF over 3d transition metals based catalysts in an environmental friendly medium such as water
- …
