501 research outputs found

    Listen to genes : dealing with microarray data in the frequency domain

    Get PDF
    Background: We present a novel and systematic approach to analyze temporal microarray data. The approach includes normalization, clustering and network analysis of genes. Methodology: Genes are normalized using an error model based uniform normalization method aimed at identifying and estimating the sources of variations. The model minimizes the correlation among error terms across replicates. The normalized gene expressions are then clustered in terms of their power spectrum density. The method of complex Granger causality is introduced to reveal interactions between sets of genes. Complex Granger causality along with partial Granger causality is applied in both time and frequency domains to selected as well as all the genes to reveal the interesting networks of interactions. The approach is successfully applied to Arabidopsis leaf microarray data generated from 31,000 genes observed over 22 time points over 22 days. Three circuits: a circadian gene circuit, an ethylene circuit and a new global circuit showing a hierarchical structure to determine the initiators of leaf senescence are analyzed in detail. Conclusions: We use a totally data-driven approach to form biological hypothesis. Clustering using the power-spectrum analysis helps us identify genes of potential interest. Their dynamics can be captured accurately in the time and frequency domain using the methods of complex and partial Granger causality. With the rise in availability of temporal microarray data, such methods can be useful tools in uncovering the hidden biological interactions. We show our method in a step by step manner with help of toy models as well as a real biological dataset. We also analyse three distinct gene circuits of potential interest to Arabidopsis researchers

    Outcomes in patients with gunshot wounds to the brain.

    Get PDF
    Introduction:Gunshot wounds to the brain (GSWB) confer high lethality and uncertain recovery. It is unclear which patients benefit from aggressive resuscitation, and furthermore whether patients with GSWB undergoing cardiopulmonary resuscitation (CPR) have potential for survival or organ donation. Therefore, we sought to determine the rates of survival and organ donation, as well as identify factors associated with both outcomes in patients with GSWB undergoing CPR. Methods:We performed a retrospective, multicenter study at 25 US trauma centers including dates between June 1, 2011 and December 31, 2017. Patients were included if they suffered isolated GSWB and required CPR at a referring hospital, in the field, or in the trauma resuscitation room. Patients were excluded for significant torso or extremity injuries, or if pregnant. Binomial regression models were used to determine predictors of survival/organ donation. Results:825 patients met study criteria; the majority were male (87.6%) with a mean age of 36.5 years. Most (67%) underwent CPR in the field and 2.1% (n=17) survived to discharge. Of the non-survivors, 17.5% (n=141) were considered eligible donors, with a donation rate of 58.9% (n=83) in this group. Regression models found several predictors of survival. Hormone replacement was predictive of both survival and organ donation. Conclusion:We found that GSWB requiring CPR during trauma resuscitation was associated with a 2.1% survival rate and overall organ donation rate of 10.3%. Several factors appear to be favorably associated with survival, although predictions are uncertain due to the low number of survivors in this patient population. Hormone replacement was predictive of both survival and organ donation. These results are a starting point for determining appropriate treatment algorithms for this devastating clinical condition. Level of evidence:Level II

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination

    Get PDF
    Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell–APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories

    Gene expression clines reveal local adaptation and associated trade-offs at a continental scale

    Get PDF
    Local adaptation, where fitness in one environment comes at a cost in another, should lead to spatial variation in trade-offs between life history traits and may be critical for population persistence. Recent studies have sought genomic signals of local adaptation, but often have been limited to laboratory populations representing two environmentally different locations of a species' distribution. We measured gene expression, as a proxy for fitness, in males of Drosophila subobscura, occupying a 20° latitudinal and 11 °C thermal range. Uniquely, we sampled six populations and studied both common garden and semi-natural responses to identify signals of local adaptation. We found contrasting patterns of investment: transcripts with expression positively correlated to latitude were enriched for metabolic processes, expressed across all tissues whereas negatively correlated transcripts were enriched for reproductive processes, expressed primarily in testes. When using only the end populations, to compare our results to previous studies, we found that locally adaptive patterns were obscured. While phenotypic trade-offs between metabolic and reproductive functions across widespread species are well-known, our results identify underlying genetic and tissue responses at a continental scale that may be responsible for this. This may contribute to understanding population persistence under environmental change

    Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease

    Get PDF
    Disease models: A reflex reaction A simple reflex in flies can be used to test the effectiveness of therapies that slow neurodegeneration in Parkinson’s disease (PD). Christopher Elliott and colleagues at the University of York in the United Kingdom investigated the contraction of the proboscis muscle which mediates a taste behavior response and is regulated by a single dopaminergic neuron. Flies bearing particular mutations in the PD-associated gene leucine-rich repeat kinase 2 (LRRK2) in dopaminergic neurons lost their ability to feed on a sweet solution. This was due to the movement of the proboscis muscle becoming slower and stiffer, hallmark features of PD. The authors rescued the impaired reflex reaction by feeding the flies l-DOPA or LRRK2 inhibitors. These findings highlight the proboscis extension response as a useful tool to identify other PD-associated mutations and test potential therapeutic compounds

    Neurons that Function within an Integrator to Promote a Persistent Behavioral State in Drosophila

    Get PDF
    Innate behaviors involve both reflexive motor programs and enduring internal states, but how these responses are coordinated by the brain is not clear. In Drosophila, male-specific P1 interneurons promote courtship song, as well as a persistent internal state that prolongs courtship and enhances aggressiveness. However, P1 neurons themselves are not persistently active. Here, we identify pCd neurons as persistently active, indirect P1 targets that are required for P1-evoked persistent courtship and aggression. Acute activation of pCd neurons alone is inefficacious but enhances and prolongs courtship or aggression promoted by female cues. Brief female exposure induces a persistent increase in male aggressiveness, an effect abrogated by interruption of pCd activity. pCd activity is not sufficient but necessary for persistent physiological activity, implying an essential role in a persistence network. Thus, P1 neurons coordinate both command-like control of courtship song and a persistent internal state of social arousal mediated by pCd neurons

    Control of daily transcript oscillations in Drosophila by light and the circadian clock

    Get PDF
    The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12- to 48-h period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many light-responsive transcripts are preferentially expressed in the compound eyes and the phospholipase C component of phototransduction, NORPA (no receptor potential), is required for their light-dependent regulation. Although there is evidence for the existence of multiple molecular clock circuits in cyanobacteria, protists, plants, and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod.UPNA
    corecore