5,008 research outputs found
So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees.
© 2014 Wolf et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.Citation: Wolf S, McMahon DP, Lim KS, Pull CD, Clark SJ, et al. (2014) So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected
Honeybees. PLoS ONE 9(8): e103989. doi:10.1371/journal.pone.0103989Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen--Nosema ceranae (Microsporidia)--on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed.Biotechnology and Biological Sciences Research Council (BBSRC)Department for Environment Food & Rural Affairs (DEFRA)Natural Environment Research Council (NERC)The Scottish GovernmentWellcome Trus
Synovial cell metabolism and chronic inflammation in rheumatoid arthritis
Metabolomic studies of body fluids show that immune-mediated inflammatory diseases such as rheumatoid arthritis (RA) are associated with metabolic disruption. This is likely to reflect the increased bioenergetic and biosynthetic demands of sustained inflammation and changes to nutrient and oxygen availability in damaged tissue. The synovial membrane lining layer is the principle site of inflammation in RA. Here the resident cells are the fibroblast-like synoviocytes (FLS) and the synovial tissue macrophages (STM), which are transformed toward overproduction of enzymes which degrade cartilage and bone, and cytokines which promote immune cell infiltration. Recent studies have shown metabolic changes in both FLS and macrophages from RA patients and these may be therapeutically targetable. However, as the origins and subset specific functions of synoviocytes are poorly understood and the signaling modules which control metabolic deviation in RA synovial cells are yet to be explored, significant additional research is needed to translate these findings toward clinical application. Furthermore, in many inflamed tissues, different cell types can forge metabolic collaborations through solute carriers (SLC) in their membranes, to meet a high demand for energy or biomolecules. Such relationships are likely to exist in the synovium and are yet to be explored. Finally, it is not yet known whether metabolic change is a consequence of disease or if primary changes to cellular metabolism might underlie or contribute to early stage disease pathogenesis. This article collates what is known about metabolism in synovial tissue cells and highlights future research directions in this area
Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.
The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe
Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660
We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries
Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons
One of the most remarkable results of quantum mechanics is the fact that
many-body quantum systems may exhibit phase transitions even at zero
temperature. Quantum fluctuations, deeply rooted in Heisenberg's uncertainty
principle, and not thermal fluctuations, drive the system from one phase to
another. Typically, the relative strength of two competing terms in the
system's Hamiltonian is changed across a finite critical value. A well-known
example is the Mott-Hubbard quantum phase transition from a superfluid to an
insulating phase, which has been observed for weakly interacting bosonic atomic
gases. However, for strongly interacting quantum systems confined to
lower-dimensional geometry a novel type of quantum phase transition may be
induced for which an arbitrarily weak perturbation to the Hamiltonian is
sufficient to drive the transition. Here, for a one-dimensional (1D) quantum
gas of bosonic caesium atoms with tunable interactions, we observe the
commensurate-incommensurate quantum phase transition from a superfluid
Luttinger liquid to a Mott-insulator. For sufficiently strong interactions, the
transition is induced by adding an arbitrarily weak optical lattice
commensurate with the atomic granularity, which leads to immediate pinning of
the atoms. We map out the phase diagram and find that our measurements in the
strongly interacting regime agree well with a quantum field description based
on the exactly solvable sine-Gordon model. We trace the phase boundary all the
way to the weakly interacting regime where we find good agreement with the
predictions of the 1D Bose-Hubbard model. Our results open up the experimental
study of quantum phase transitions, criticality, and transport phenomena beyond
Hubbard-type models in the context of ultracold gases
An Action-Based Approach to Presence: Foundations and Methods
This chapter presents an action-based approach to presence. It starts by briefly describing the theoretical and empirical foundations of this approach, formalized into three key notions of place/space, action and mediation. In the light of these notions, some common assumptions about presence are then questioned: assuming a neat distinction between virtual and real environments, taking for granted the contours of the mediated environment and considering presence as a purely personal state. Some possible research topics opened up by adopting action as a unit of analysis are illustrated. Finally, a case study on driving as a form of mediated presence is discussed, to provocatively illustrate the flexibility of this approach as a unified framework for presence in digital and physical environment
VEZF1 elements mediate protection from DNA methylation
There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat
Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk
When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency
Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests
Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized
- …
