2,012 research outputs found
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
Summary of: Financial Impacts of the COVID-19 Pandemic on Immigrant Communities in Portland, Maine: A Qualitative Study
The COVID-19 pandemic not only disproportionately impacted the health of immigrants in the US, but it led to financial disparities as well.
Study found @ Financial impacts of the COVID-19 pandemic on immigrant communities in by Eilish W. Carpenterhttps://knowledgeconnection.mainehealth.org/nnectr/1008/thumbnail.jp
First measurement of the meson mass
If simplified, every information retrieval problem can be solved when the information need implied by its expression has been identified. We are interested in the criteria used in realising a good information retrieval problem expression. We have listed these criteria through some principles and maxims which first characterized the communication between two persons are applied. We choose to use the gricean maxims because they are the most favoured for this type of situation. Secondly, we have tried to identify some others principles that can be used to realise a good information retrieval problem expression. The principles by Grice can not resolve all forms of error associated with this particular form of communication. In our work, we defined three other principles namely: adhesion principle, reformulation principle, memorization principle. We give some examples of situations where the principles we have formulated are not applicable and the consequences. We present the possible applications of our new model: MIRABEL, which can help in the description of information retrieval problem from. It also compels its user to use essential good expression principle implicitly
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
Generalized shape optimization with X-FEM and Level Set description applied to stress constrained structures
Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry
Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10−6), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10−11) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10−10). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region—the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r2 = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case–case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer
Efficacy and safety of long-acting recombinant fusion protein linking factor IX with albumin in haemophilia B patients undergoing surgery.
IntroductionRecombinant factor IX fusion protein (rIX‐FP) has been developed to improve the pharmacokinetic (PK) profile of factor IX (FIX), allowing maintenance of desired FIX activity between injections at extended intervals, ultimately optimizing haemophilia B treatment.AimTo determine the efficacy and safety of rIX‐FP in the perioperative setting.MethodsSubjects were adult and paediatric patients with severe to moderately severe haemophilia B (FIX ≤ 2%) participating in three Phase III clinical trials and undergoing a surgical procedure. PK profiles were established prior to surgery for each patient. Haemostatic efficacy was assessed by the investigator for up to 72 h after surgery. Safety measurements during the study included adverse events and inhibitors to FIX. FIX activity was monitored during and after surgery to determine if repeat dosing was required.ResultsTwenty‐one, both major and minor, surgeries were performed in 19 patients. Haemostatic efficacy was rated as excellent (n = 17) or good (n = 4) in all surgeries. A single preoperative dose maintained intraoperative haemostasis in 20 of 21 surgeries. Nine major orthopaedic surgeries were conducted in eight patients with a mean of 7 (range: 6–12) rIX‐FP injections during surgery and the 14‐day postoperative period. Median rIX‐FP consumption for orthopaedic surgeries was 87 IU kg−1 preoperatively and 375 IU kg−1 overall. No subject developed inhibitors to FIX or antibodies to rIX‐FP.ConclusionRecombinant factor IX fusion protein was well tolerated and effectively maintained haemostasis during and after surgery. Stable FIX activity was achieved with a prolonged dosing interval and reduced consumption compared to conventional or currently available long‐acting recombinant FIX
The biological and evolutionary basis of systemic plant pathogenesis in Xanthomonas. Session 4. Oral 35
Pathogenic microbes cause systemic and non-systemic diseases of plant and animal hosts. Systemic diseases are particularly destructive because the pathogen moves through the host vasculature causing widespread infection; meanwhile non-systemic pathogens remain restricted to the nonvascular tissue near the site of infection. The basis of systemic and non-systemic pathogenesis is unclear. Here we describe the role of cell wall degradation in the evolution and biology in the Gramnegative phytobacterial genus Xanthomonas. Xanthomonas comprises a diverse group of vascular and non-vascular pathogens of over 200 plant species. We demonstrate that a single, vascular pathogen-unique cell wall degrading enzyme called CelA contributes to systemic pathogenesis in multiple pathogenic lineages in this diverse genus. We determined that CelA1 was conserved only in systemic pathogenic bacteria in the genera Xanthomonas, Xylella and Ralstonia but absent in nonsystemic Gram-negative plant pathogenic bacteria. Most notably addition of this cell wall degrading enzyme to two distinct non-systemic pathogen species, barley-infecting Xanthomonas translucens and rice-infecting Xanthomonas oryzae, permitted systemic pathogenesis of their respective host plants. Further genomic analysis of non-systemic Xanthomonas pathogens appear to have inactivated this trait suggesting that they arose from related vascular subgroups upon adapting to the non-vascular plant environment. Overall this work provides a framework to describe pathogen emergence based on symptom development and tissue-specificity in an important pathogen genus. (Résumé d'auteur
- …
