183 research outputs found
Management and personality in Labrador Retriever dogs
Canine personality is of keen interest to dog owners and researchers alike. The regular human contact with them makes dogs an ideal species to use in the investigation of animal personality. This study specifically focused on Labrador Retrievers, consistently one of the most popular breeds both in the UK and around the world. Using surveys completed by dog owners, data was gathered on the behaviour of the dogs, in addition to the physical characteristics and management characteristics of the dogs (n = 1978). Twelve personality traits were identified and investigated for associations with the demographic data. It was found that the working status of the dog was more commonly associated with differences in personality than other analyzed factors. Gundogs had higher scores for ‘fetching tendency’ and ‘trainability’ than Showdogs or Pets (P < 0.05). Chocolate dogs were more ‘agitated when ignored’ and showed more ‘excitability’ than black dogs, and lower ‘trainability’ and ‘noise fear’ than both yellow and black dogs (all P < 0.05). Dogs exercised for longer periods showed less aggression, less fear of humans and objects and lower separation anxiety than dogs that were not as active. The effects observed in this study may be due to the experience and training of the dogs, the work-related genetic strain of Labrador Retriever or most likely, a combination of both influences. © 2014 Elsevier B.V. All rights reserved
Clostridium difficile infection.
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota
High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA
<p>Abstract</p> <p>Background</p> <p>Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome.</p> <p>Methods</p> <p>High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene.</p> <p>Results</p> <p>High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of <it>P. falciparum </it>parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection.</p> <p>Conclusions</p> <p>High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots.</p
Detection of codon 12 K- ras mutations in non-neoplastic mucosa from bronchial carina in patients with lung adenocarcinomas
K- ras activation by point mutation in codon 12 has been reported in lung adenocarcinomas in various models of experimental lung tumours induced by chemical carcinogens. The hypothesis of the presence of cells containing K- ras mutation in non neoplastic bronchial carina, the main site of impaction of airborne contaminants, was investigated by evaluating concurrent lung tumour and non-neoplastic proximal bronchial carinae from 19 patients with lung adenocarcinomas. The restriction fragment length polymorphism enriched PCR method used can detect one mutant allele among 103normal alleles. A mutation was detected in 42% of lung adenocarcinoma samples. No mutation was detected in either tumour or bronchial carinae in nine patients (47%). K- ras mutation was detected in the lung tumour but not in bronchial carinae in four patients (21%), in both the lung tumour and bronchial carinae in four other patients (21%). In two patients (11%), K- ras mutation was detected in at least one bronchial carina, but not in the lung tumour. Mutations of codon 12, confirmed by sequencing analysis of ten samples, were G to T transversion, mostly TGT and GTT in bronchial carinae and lung tumours. Our data show that activated K- ras by point mutation can be present in non-neoplastic bronchial carina mucosa even when no mutation is detected in tumour samples. © 2000 Cancer Research Campaig
Accurate Real-Time PCR Strategy for Monitoring Bloodstream Parasitic Loads in Chagas Disease Patients
Infection with the parasite Trypanosoma cruzi (T. cruzi), causing American trypanosomiasis or Chagas disease, remains a major public health concern in 21 endemic countries of America, with an estimated prevalence of 8 million infected people. Chagas disease shows a variable clinical course, ranging from asymptomatic to chronic stages with low parasitaemias, whose severest form is heart disease. Diagnosis at the asymptomatic and chronic stages is based on serological detection of anti-T. cruzi antibodies, because conventional parasitological methods lack sensitivity. Current chemotherapies are more effective in recent infections than in the chronic adult population. The criterion of cure relies on serological conversion to negative, which may occur only years after treatment, requiring long-term follow-up. In this context, we aimed to develop a real-time PCR assay targeted to repetitive sequences of T. cruzi for sensitive quantitation of parasitic load in peripheral blood of infected patients. It was applied to monitor treatment response of infected children, allowing rapid evaluation of drug efficacy as well as detection of treatment failure. It was also used for early diagnosis of chagasic reactivation in end-stage heart disease patients who received immunosuppressive drugs after cardiac transplantation. This laboratory strategy may constitute a novel parasitological tool for prompt and sensitive evaluation of anti-parasitic treatment of Chagas disease
Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems
<p>Abstract</p> <p>Background</p> <p>There is a paucity of data regarding molecular markers that identify the phenotype of the tendon cell. This study aims to quantify gene expression markers that distinguish between tendon fibroblasts and other mesenchymal cells which may be used to investigate tenogenesis.</p> <p>Methods</p> <p>Expression levels for 12 genes representative of musculoskeletal tissues, including the proposed tendon progenitor marker scleraxis, relative to validated reference genes, were evaluated in matched samples of equine tendon (harvested from the superficial digital flexor tendon), cartilage and bone using quantitative PCR (qPCR). Expression levels of genes associated with tendon phenotype were then evaluated in healthy, including developmental, and diseased equine tendon tissue and in tendon fibroblasts maintained in both monolayer culture and in three dimensional (3D) collagen gels.</p> <p>Results</p> <p>Significantly increased expression of scleraxis was found in tendon compared with bone (P = 0.002) but not compared to cartilage. High levels of COL1A2 and scleraxis and low levels of tenascin-C were found to be most representative of adult tensional tendon phenotype. While, relative expression of scleraxis in developing mid-gestational tendon or in acute or chronically diseased tendon did not differ significantly from normal adult tendon, tenascin-C message was significantly upregulated in acutely injured equine tendon (P = 0.001). Relative scleraxis gene expression levels in tendon cell monolayer and 3D cultures were significantly lower than in normal adult tendon (P = 0.002, P = 0.02 respectively).</p> <p>Conclusion</p> <p>The findings of this study indicate that high expression of both COL1A2 and scleraxis, and low expression of tenascin-C is representative of a tensional tendon phenotype. The <it>in vitro </it>culture methods used in these experiments however, may not recapitulate the phenotype of normal tensional tendon fibroblasts in tissues as evidenced by gene expression.</p
Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications
Validating and reliability testing the descriptive data and three different disease diagnoses of the internet-based DOGRISK questionnaire
Characterization of Human Osteoarthritic Cartilage Using Optical and Magnetic Resonance Imaging
Purpose: Osteoarthritis (OA) is a degenerative disease starting with key molecular events that ultimately lead to the breakdown of the cartilage. The purpose of this study is to use two imaging methods that are sensitive to molecular and macromolecular changes in OA to better characterize the disease process in human osteoarthritic cartilage. Procedures: Human femoral condyles were collected from patients diagnosed with severe OA during total knee replacement surgeries. T1ρ and T2 magnetic resonance measurements were obtained using a 3-Tesla whole body scanner to assess macromolecular changes in the damaged cartilage matrix. Optical imaging was performed on specimens treated with MMPSense 680 to assess the matrix metalloproteinase (MMP) activity. A linear regression model was used to assess the correlation of MMP optical data with T 1ρ magnetic resonance (MR) measurements. Slices from a representative specimen were removed from regions with high and low optical signals for subsequent histological analysis. Results: All specimens exhibit high T1ρ and T2 measurements in the range of 48–75 ms and 36– 69 ms, respectively. They also show intense photon signals (0.376 to 7.89×10 −4 cm 2) from th
Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae
BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity
- …
