212 research outputs found

    Protecting tropical forests from the rapid expansion of rubber using carbon payments

    Get PDF
    Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in Southeast Asia. Southeast Asian rubber extent is massive, equivalent to 67% of oil palm, with rapid further expansion predicted. Results-based carbon finance could dis-incentivise forest conversion to rubber, but efficacy will be limited unless payments match, or at least approach, the costs of avoided deforestation. These include opportunity costs (timber and rubber profits), plus carbon finance scheme setup (transaction) and implementation costs. Using comprehensive Cambodian forest data, exploring scenarios of selective logging and conversion, and assuming land-use choice is based on net present value, we find that carbon prices of 3030-51 per tCO2are needed to break even against costs, higher than those currently paid on carbon markets or through carbon funds. To defend forests from rubber, either carbon prices must be increased, or other strategies are needed, such as corporate zero-deforestation pledges, and governmental regulation and enforcement of forest protection

    Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci

    Get PDF
    Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies (GWAS). Methods and Results: Through a meta-analysis of 6 GWAS datasets and a validation study totalling 10,204 cases and 107,766 controls we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches we observed no new associations between the lead AAA SNPs and coronary artery disease, blood pressure, lipids or diabetes. Network analyses identified ERG, IL6R and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA appear to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease

    The lancet weight determines wheal diameter in response to skin prick testing with histamine

    Get PDF
    BACKGROUND:Skin prick test (SPT) is a common test for diagnosing immunoglobulin E-mediated allergies. In clinical routine, technicalities, human errors or patient-related biases, occasionally results in suboptimal diagnosis of sensitization. OBJECTIVE:Although not previously assessed qualitatively, lancet weight is hypothesized to be important when performing SPT to minimize the frequency of false positives, false negatives, and unwanted discomfort. METHODS:Accurate weight-controlled SPT was performed on the volar forearms and backs of 20 healthy subjects. Four predetermined lancet weights were applied (25 g, 85 g, 135 g and 265 g) using two positive control histamine solutions (1 mg/mL and 10 mg/mL) and one negative control (saline). A total of 400 SPTs were conducted. The outcome parameters were: wheal size, neurogenic inflammation (measured by superficial blood perfusion), frequency of bleeding, and the lancet provoked pain response. RESULTS:The mean wheal diameter increased significantly as higher weights were applied to the SPT lancet, e.g. from 3.2 ± 0.28 mm at 25 g to 5.4 ± 1.7 mm at 265 g (p<0.01). Similarly, the frequency of bleeding, the provoked pain, and the neurogenic inflammatory response increased significantly. At 265 g saline evoked two wheal responses (/160 pricks) below 3 mm. CONCLUSION AND CLINICAL RELEVANCE:The applied weight of the lancet during the SPT-procedure is an important factor. Higher lancet weights precipitate significantly larger wheal reactions with potential diagnostic implications. This warrants additional research of the optimal lancet weight in relation to SPT-guidelines to improve the specificity and sensitivity of the procedure

    Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection

    No full text
    BACKGROUND Clostridium difficile is the most common cause of infectious diarrhea in hospitalized patients. Recurrences are common after antibiotic therapy. Actoxumab and bezlotoxumab are human monoclonal antibodies against C. difficile toxins A and B, respectively. METHODS We conducted two double-blind, randomized, placebo-controlled, phase 3 trials, MODIFY I and MODIFY II, involving 2655 adults receiving oral standard-of-care antibiotics for primary or recurrent C. difficile infection. Participants received an infusion of bezlotoxumab (10 mg per kilogram of body weight), actoxumab plus bezlotoxumab (10 mg per kilogram each), or placebo; actoxumab alone (10 mg per kilogram) was given in MODIFY I but discontinued after a planned interim analysis. The primary end point was recurrent infection (new episode after initial clinical cure) within 12 weeks after infusion in the modified intention-to-treat population. RESULTS In both trials, the rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, −10.1 percentage points; 95% confidence interval [CI], −15.9 to −4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, −9.9 percentage points; 95% CI, −15.5 to −4.3; P<0.001) and was significantly lower with actoxumab plus bezlotoxumab than with placebo (MODIFY I: 16% [61 of 383] vs. 28% [109 of 395]; adjusted difference, −11.6 percentage points; 95% CI, −17.4 to −5.9; P<0.001; MODIFY II: 15% [58 of 390] vs. 26% [97 of 378]; adjusted difference, −10.7 percentage points; 95% CI, −16.4 to −5.1; P<0.001). In prespecified subgroup analyses (combined data set), rates of recurrent infection were lower in both groups that received bezlotoxumab than in the placebo group in subpopulations at high risk for recurrent infection or for an adverse outcome. The rates of initial clinical cure were 80% with bezlotoxumab alone, 73% with actoxumab plus bezlotoxumab, and 80% with placebo; the rates of sustained cure (initial clinical cure without recurrent infection in 12 weeks) were 64%, 58%, and 54%, respectively. The rates of adverse events were similar among these groups; the most common events were diarrhea and nausea. CONCLUSIONS Among participants receiving antibiotic treatment for primary or recurrent C. difficile infection, bezlotoxumab was associated with a substantially lower rate of recurrent infection than placebo and had a safety profile similar to that of placebo. The addition of actoxumab did not improve efficacy. (Funded by Merck; MODIFY I and MODIFY II ClinicalTrials.gov numbers, NCT01241552 and NCT01513239.

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress

    IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    Get PDF
    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in plant immunity

    Arabidopsis Plasmodesmal Proteome

    Get PDF
    The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341 proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes, the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%) of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with examples identified in different plant systems. Many of these had a membrane association reflecting the membranous nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key components in cell-to-cell communication in plants

    Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance

    Get PDF
    Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance
    corecore