756 research outputs found
Measurements of Biogenic Amines and Metabolites in the CSf of Suicide Victims and Nonsuicides
Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios
We present strong bounds on the sum of three active neutrino masses () in various cosmological models. We use the following baseline
datasets: CMB temperature data from Planck 2015, BAO measurements from SDSS-III
BOSS DR12, the newly released SNe Ia dataset from Pantheon Sample, and a prior
on the optical depth to reionization from 2016 Planck Intermediate results. We
constrain cosmological parameters in model with 3 massive active
neutrinos. For this model we find a upper bound of
0.152 eV at 95 C.L. Adding the high- polarization data
from Planck strengthens this bound to 0.118 eV, which is very
close to the minimum required mass of 0.1 eV for inverted
hierarchy. This bound is reduced to 0.110 eV when we also vary
r, the tensor to scalar ratio ( model), and add an
additional dataset, BK14, the latest data released from the Bicep-Keck
collaboration. This bound is further reduced to 0.101 eV in a
cosmology with non-phantom dynamical dark energy (
model with for all ). Considering the model and adding the BK14 data again, the bound can be even further
reduced to 0.093 eV. For the model
without any constraint on , the bounds however relax to
0.276 eV. Adding a prior on the Hubble constant (
km/sec/Mpc) from Hubble Space Telescope (HST), the above mentioned bounds
further improve to 0.117 eV, 0.091 eV, 0.085 eV, 0.082 eV,
0.078 eV and 0.247 eV respectively. This substantial improvement is mostly
driven by a more than 3 tension between Planck 2015 and HST
measurements of and should be taken cautiously. (abstract abridged)Comment: 31 pages, 19 figures, matches published version in JCA
Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives.
Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral–fluid–microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use
The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains
We have investigated the contribution to ionic
selectivity of residues in the selectivity filter and pore
helices of the P1 and P2 domains in the acid sensitive
potassium channel TASK-1. We used site directed mutagenesis
and electrophysiological studies, assisted by structural
models built through computational methods. We have
measured selectivity in channels expressed in Xenopus
oocytes, using voltage clamp to measure shifts in reversal
potential and current amplitudes when Rb+ or Na+ replaced
extracellular K+. Both P1 and P2 contribute to selectivity,
and most mutations, including mutation of residues in the
triplets GYG and GFG in P1 and P2, made channels nonselective.
We interpret the effects of these—and of other
mutations—in terms of the way the pore is likely to be
stabilised structurally. We show also that residues in the
outer pore mouth contribute to selectivity in TASK-1.
Mutations resulting in loss of selectivity (e.g. I94S, G95A)
were associated with slowing of the response of channels to
depolarisation. More important physiologically, pH sensitivity
is also lost or altered by such mutations. Mutations
that retained selectivity (e.g. I94L, I94V) also retained their
response to acidification. It is likely that responses both to
voltage and pH changes involve gating at the selectivity filter
Recommended from our members
Radiogenic backgrounds in the NEXT double beta decay experiment
Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterráneo de Canfranc with xenon depleted in 136Xe are analyzed to derive a total background rate of (0.84±0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of 60Co, 40K, 214Bi and 208Tl to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25±0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5σ after 1 year of data taking. The background measurement in a Qββ±100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75±0.12) events. [Figure not available: see fulltext.]
Brillouin Scattering Self-cancellation
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.7Sao Paulo Research Foundation (FAPESP) [2013/20180-3, 2012/17765-7, 2012/17610-3, 08/57857-2]National Council for Scientific and Technological Development (CNPq) [574017/2008-9]Coordination for the Improvement of Higher Education Personnel (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
Recommended from our members
Demonstration of the event identification capabilities of the NEXT-White detector
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat± 0.3 sys% for a background acceptance of 20.6 ± 0.4 stat± 0.3 sys% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies. [Figure not available: see fulltext.
Tetragonal-cubic phase transition in KGaSi2O6 synthetic leucite analogue and its probable mechanism
Synthetic leucite KGaSi2O6 at 298K is I41/a tetragonal and is isostructural with natural leucite (KAlSi2O6); with unit cell parameters of a = 13.1099 (4), c = 13.8100 (4) Å, V = 2373.50 (12) Å3. With increasing temperature it undergoes a reversible, displacive phase transition from I41/a to cubic Ia3‾d; this well-studied phase transition in KAlSi2O6 occurs at ~930K. However for KGaSi2O6 it is smeared out from 673 to ~970K where it consists of a mixture of the low- and high-temperature polymorphs. The proportion of the cubic phase increases with temperature; the cubic phase volume is ~1% larger than the coexisting tetragonal polymorph. At a fixed temperature within this ‘region of coexistence’ phase proportions do not change. Such features are characteristic of 1st order, diffusionless, strain-meditated, martensitic-type phase transitions. It seems that the phase transition for synthetic KGaSi2O6 is close to being purely ferroelastic in character
A generalized semi-analytic model for magnetar-driven supernovae
Several types of energetic supernovae, such as superluminous supernovae (SLSNe) and broad-line Ic supernovae (Ic-BL SNe), could be powered by the spin-down of a rapidly rotating magnetar. Currently, most models used to infer the parameters for potential magnetar-driven supernovae make several unsuitable assumptions that likely bias the estimated parameters. In this work, we present a new model for magnetar-driven supernovae that relaxes several of these assumptions and an inference workflow that enables accurate estimation of parameters from light curves of magnetar-driven supernovae. In particular, in this model, we include the dynamical evolution of the ejecta, coupling it to the energy injected by the magnetar itself while also allowing for non-dipole spin down. We show that the model can reproduce SLSN and Ic-BL SN light curves consistent with the parameter space from computationally expensive numerical simulations. We also show the results of parameter inference on four well-known example supernovae, demonstrating the model's effectiveness at capturing the considerable diversity in magnetar-driven supernova light curves. The model fits each light curve well and recovers parameters broadly consistent with previous works. This model will allow us to explore the full diversity of magnetar-driven supernovae under one theoretical framework, more accurately characterize these supernovae from only photometric data, and make more accurate predictions of future multiwavelength emission to test the magnetar-driven scenario better
- …
