153 research outputs found
A Learning Management System-Based Early Warning System for Academic Advising in Undergraduate Engineering
This chapter describes a design-based research project that developed an early warning system for an undergraduate engineering mentoring program. Using near real-time data from a university’s learning management system, we provided academic advisors with timely and targeted data on students’ academic progress. We discuss the development of the early warning system and detail how academic advisors used it. Our findings point to the value of providing academic advisors with performance data that can be used to direct students to appropriate sources of support.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107974/1/Krumm_etal_2014_LA.pd
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Teachers and didacticians: key stakeholders in the processes of developing mathematics teaching
This paper sets the scene for a special issue of ZDM-The International Journal on Mathematics Education-by tracing key elements of the fields of teacher and didactician/teacher-educator learning related to the development of opportunities for learners of mathematics in classrooms. It starts from the perspective that joint activity of these two groups (teachers and didacticians), in creation of classroom mathematics, leads to learning for both. We trace development through key areas of research, looking at forms of knowledge of teachers and didacticians in mathematics; ways in which teachers or didacticians in mathematics develop their professional knowledge and skill; and the use of theoretical perspectives relating to studying these areas of development. Reflective practice emerges as a principal goal for effective development and is linked to teachers' and didacticians' engagement with inquiry and research. While neither reflection nor inquiry are developmental panaceas, we see collaborative critical inquiry between teachers and didacticians emerging as a significant force for teaching development. We include a summary of the papers of the special issue which offer a state of the art perspective on developmental practice. © 2014 FIZ Karlsruhe
Co-resident Parents and Young People Aged 15–34: Who Does What Housework?
Young adults are now more likely to co-reside with their parents than previous generations, but domestic work patterns among this family type are largely unexplored. This study addresses this issue using Australian Bureau of Statistics Time Use Surveys (1992, 1997, 2006) and Poisson–Gamma regression analyses. It examines patterns in and correlates of domestic labor in two-generation households in which young people aged 15–34 co-reside with their parents (n = 1,946 households comprised of 2,806 young people and 5,129 parents). It differentiates between routine indoor tasks (cooking, cleaning, laundry), non-routine tasks (outdoor work, household management and maintenance, car care) and grocery shopping. Predictors of more time in some domestic activities by young people include being in neither employment nor education/training (NEET), being older, having a single parent and being in a non-English speaking household (young women). Young people being NEET, or female, are associated with less cooking time for mothers, but in the main when young people do perform domestic activities, they do not relieve their parents of those same activities, suggesting more time is spent by the household in total
Selected MicroRNAs Define Cell Fate Determination of Murine Central Memory CD8 T Cells
During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K + channel interacting protein 1), was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies
The direct effect of Focal Adhesion Kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis
<p>Abstract</p> <p>Background</p> <p>Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis.</p> <p>Methods</p> <p>To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible) system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD), and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation <it>in vitro</it>, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD <it>in vivo</it>, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors.</p> <p>Results</p> <p>Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability <it>in vitro </it>and inhibited tumorigenesis <it>in vivo</it>. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p < 0.05) by FAKsiRNA.</p> <p>Conclusion</p> <p>Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis <it>in vivo </it>and reveal specific expression of genes affected by silencing of FAK.</p
Modeling Brain Resonance Phenomena Using a Neural Mass Model
Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect
Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences
Lette
- …
