164 research outputs found
Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis
Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine
Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP
Calcium-dependent release of adenosine and uridine nucleotides from A549 cells
Extracellular nucleotides play an important role in lung defense, but the release mechanism and relative abundance of different nucleotide species secreted by lung epithelia are not well defined. In this study, to minimize cell surface hydrolysis, we used a low-volume, flow-through chamber and examined adenosine and uridine nucleotide concentrations in perfusate aliquots of human lung A549 cells challenged by 50% hypotonic shock. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (Ado) were quantified in high-performance liquid chromatography (HPLC) analysis of fluorescent etheno derivatives, and uridine triphosphate (UTP) and uridine diphosphate (UDP) were measured using HPLC-coupled radioenzymatic assays. After the onset of hypotonic shock, ATP, ADP, UTP, and UDP in the perfusates increased markedly and peaked at approximately 2.5 min, followed by a gradual decay in the next 15–20 min; peak changes in Ado and AMP were relatively minor. The peak concentrations and fold increment (in parentheses) were: 34 ± 13 nM ATP (5.6), 11 ± 5 nM ADP (3.7), 3.3 ± 1.2 nM AMP (1.4), 23 ± 7 nM Ado (2.1), 21 nM UTP (>7), and 11 nM UDP (27). Nucleotide release was almost completely abolished from cells loaded with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Under isotonic conditions, elevation of intracellular calcium with the calcium ionophore ionomycin (5 μM, 3 min) also released nucleotides with kinetics and relative abundance as above, albeit less robust. ADP:ATP (1:3) and UDP:UTP (1:2) ratios in perfusates from stimulated cells were markedly higher than the cytosolic ratios of these species, suggesting that a nucleotide diphosphate (NDP)-rich compartment, e.g., the secretory pathway, contributed to nucleotide release. Laser confocal microscopy experiments illustrated increased FM1-43 uptake into the plasma membrane upon hypotonic shock or ionomycin treatment, consistent with enhanced vesicular exocytosis under these conditions. In summary, our results strongly suggest that calcium-dependent exocytosis is responsible, at least in most part, for adenosine and uridine nucleotide release from A549 cells
Quantitative monitoring of activity-dependent bulk endocytosis of synaptic vesicle membrane by fluorescent dextran imaging
Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) retrieval mode in central nerve terminals during periods of intense neuronal activity. Despite this fact there are very few real time assays that report the activity of this critical SV retrieval mode. In this paper we report a simple and quantitative assay of ADBE using uptake of large flourescent dextrans as fluid phase markers. We show that almost all dextran uptake occurs in nerve terminals, using co-localisation with the fluorescent probe FM1-43. We also demonstrate that accumulated dextran cannot be unloaded by neuronal stimulation, indicating its specific loading into bulk endosomes and not SVs. Quantification of dextran uptake was achieved by using thresholding analysis to count the number of loaded nerve terminals, since monitoring the average fluorescence intensity of these nerve terminals did not accurately report the extent of ADBE. Using this analysis we showed that dextran uptake occurs very soon after stimulation and that it does not persist when stimulation terminates. Thus we have devised a simple and quantitative method to monitor ADBE in living neurones, which will be ideal for real time screening of small molecule inhibitors of this key SV retrieval mode
Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A
Botulinum neurotoxin type A (BoNT/A) paralyses muscles by blocking acetylcholine (ACh) release from motor nerve terminals. Although highly toxic, it is used clinically to weaken muscles whose contraction is undesirable, as in dystonias. The effects of an injection of BoNT/A wear off after 3–4 months so repeated injections are often used. Recovery of neuromuscular transmission is accompanied by the formation of motor axon sprouts, some of which form new synaptic contacts. However, the functional importance of these new contacts is unknown. Using intracellular and focal extracellular recording we show that in the mouse epitrochleoanconeus (ETA), quantal release from the region of the original neuromuscular junction (NMJ) can be detected as soon as from new synaptic contacts, and generally accounts for > 80% of total release. During recovery the synaptic delay and the rise and decay times of endplate potentials (EPPs) become prolonged approximately 3-fold, but return to normal after 2–3 months. When studied after 3–4 months, the response to repetitive stimulation at frequencies up to 100 Hz is normal. When two or three injections of BoNT/A are given at intervals of 3–4 months, quantal release returns to normal values more slowly than after a single injection (11 and 15 weeks to reach 50% of control values versus 6 weeks after a single injection). In addition, branching of the intramuscular muscular motor axons, the distribution of the NMJs and the structure of many individual NMJs remain abnormal. These findings highlight the plasticity of the mammalian NMJ but also suggest important limits to it
A tale of two stories: astrocyte regulation of synaptic depression and facilitation
Short-term presynaptic plasticity designates variations of the amplitude of
synaptic information transfer whereby the amount of neurotransmitter released
upon presynaptic stimulation changes over seconds as a function of the neuronal
firing activity. While a consensus has emerged that changes of the synapse
strength are crucial to neuronal computations, their modes of expression in
vivo remain unclear. Recent experimental studies have reported that glial
cells, particularly astrocytes in the hippocampus, are able to modulate
short-term plasticity but the underlying mechanism is poorly understood. Here,
we investigate the characteristics of short-term plasticity modulation by
astrocytes using a biophysically realistic computational model. Mean-field
analysis of the model unravels that astrocytes may mediate counterintuitive
effects. Depending on the expressed presynaptic signaling pathways, astrocytes
may globally inhibit or potentiate the synapse: the amount of released
neurotransmitter in the presence of the astrocyte is transiently smaller or
larger than in its absence. But this global effect usually coexists with the
opposite local effect on paired pulses: with release-decreasing astrocytes most
paired pulses become facilitated, while paired-pulse depression becomes
prominent under release-increasing astrocytes. Moreover, we show that the
frequency of astrocytic intracellular Ca2+ oscillations controls the effects of
the astrocyte on short-term synaptic plasticity. Our model explains several
experimental observations yet unsolved, and uncovers astrocytic
gliotransmission as a possible transient switch between short-term paired-pulse
depression and facilitation. This possibility has deep implications on the
processing of neuronal spikes and resulting information transfer at synapses.Comment: 93 pages, manuscript+supplementary text, 10 main figures, 11
supplementary figures, 1 tabl
Metabotropic Glutamate Receptor–Mediated Control of Neurotransmitter Release
AbstractPresynaptic metabotropic glutamate receptors (mGluRs) modulate the release of transmitter from most central synapses. However, difficulties in recording from presynaptic structures has lead to an incomplete understanding of the mechanisms underlying these fundamental processes. By recording directly from presynaptic reticulospinal axons and postsynaptic motoneurons of the lamprey spinal cord, we have obtained electrophysiological and optical evidence that vertebrate presynaptic metabotropic glutamate receptors modulate neurotransmitter release at this synapse through two distinct mechanisms: (1) mGluR activation in the presynaptic terminal depresses transmitter release by activating a presynaptic K+ current, and (2) mGluR activation enhances transmitter release by amplifying the action potential–evoked presynaptic Ca2+ signal by rapidly releasing Ca2+ from intracellular stores in a Ca2+-dependent manner. Furthermore, this effect is mediated by physiological release of glutamate from the presynaptic terminals. These autoreceptor–mediated processes are likely to generate complex effects on transmitter release evoked by repetitive stimulation
NMDA Receptor-Mediated Control of Presynaptic Calcium and Neurotransmitter Release
Before action potential-evoked Ca2+transients, basal presynaptic Ca2+concentration may profoundly affect the amplitude of subsequent neurotransmitter release. Reticulospinal axons of the lamprey spinal cord receive glutamatergic synaptic input. We have investigated the effect of this input on presynaptic Ca2+concentrations and evoked release of neurotransmitter. Paired recordings were made between reticulospinal axons and the neurons that make axo-axonic synapses onto those axons. Both excitatory and inhibitory paired-cell responses were recorded in the axons. Excitatory synaptic inputs were blocked by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 μm) and by the NMDA receptor antagonist 2-amino-5-phosphonopentanoate (AP-5; 50 μm). Application of NMDA evoked an increase in presynaptic Ca2+in reticulospinal axons. Extracellular stimulation evoked Ca2+transients in axons when applied either directly over the axon or lateral to the axons. Transients evoked by the two types of stimulation differed in magnitude and sensitivity to AP-5. Simultaneous microelectrode recordings from the axons during Ca2+imaging revealed that stimulation of synaptic inputs directed to the axons evoked Ca2+entry. By the use of paired-cell recordings between reticulospinal axons and their postsynaptic targets, NMDA receptor activation was shown to enhance evoked release of transmitter from the axons that received axoaxonic inputs. When the synaptic input to the axon was stimulated before eliciting an action potential in the axon, transmitter release from the axon was enhanced. We conclude that NMDA receptor-mediated input to reticulospinal axons increases basal Ca2+within the axons and that this Ca2+is sufficient to enhance release from the axons.</jats:p
Glutamate receptor-mediated synaptic excitation in axons of the lamprey.
1. Spontaneous and evoked synaptic inputs were recorded in vitro in the axons of lamprey reticulospinal neurones. After isolation of the axon from its somata, synaptic inputs were recorded using microelectrode and whole-cell patch clamp recording techniques. 2. Single stimuli applied to the spinal cord elicited Ca(2+)-dependent synaptic potentials with short latencies in reticulospinal axons. These synaptic inputs are capable of summation and generate sufficient depolarization to raise the membrane potential beyond threshold to initiate action potentials. Action potential initiation in the absence of the cell body indicates that these axons show synaptic integration. 3. Both evoked and spontaneous responses comprise at least two components of synaptic drive: a slow component (rise time of 9.6 +/- 2.1 ms) with a reversal potential of -53 +/- 19 mV and a fast component (rise time as fast as 0.85 ms) with a reversal potential of 0.3 +/- 9.1 mV. The responses are Ca2+ dependent, and are blocked by the substitution of Ba2+ for Ca2+ in the saline solution. 4. The slow component of synaptic input was blocked by the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline (5 microM). The fast component was blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 6-cyano-7-nitroqinoxaline-2,3-dione (CNQX; 10 microM) in Ringer solution containing physiological concentrations of Mg2+. Following removal of Mg2+ from the superfusate a further excitatory component was identified that was blocked by application of the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoate (AP5; 100 microM). 5. Comparison of the kinetic properties and the voltage sensitivity of the isolated components of evoked and spontaneous synaptic activity indicate that these responses are mediated by similar synaptic inputs. 6. These results suggest that axons and presynaptic terminals receive excitatory and inhibitory ionotropic receptor-mediated inputs. Summation of these inputs is possible indicating that the axons act as sites of synaptic integration similar to the role previously attributed only to neuronal dendrites and somata
- …
