1,419 research outputs found
Country differences in the diagnosis and management of coronary heart disease : a comparison between the US, the UK and Germany
Background
The way patients with coronary heart disease (CHD) are treated is partly determined by non-medical factors. There is a solid body of evidence that patient and physician characteristics influence doctors' management decisions. Relatively little is known about the role of structural issues in the decision making process. This study focuses on the question whether doctors' diagnostic and therapeutic decisions are influenced by the health care system in which they take place. This non-medical determinant of medical decision-making was investigated in an international research project in the US, the UK and Germany.
Methods
Videotaped patients within an experimental study design were used. Experienced actors played the role of patients with symptoms of CHD. Several alternative versions were taped featuring the same script with patients of different sex, age and social status. The videotapes were shown to 384 randomly selected primary care physicians in the three countries under study. The sample was stratified on gender and duration of professional experience. Physicians were asked how they would diagnose and manage the patient after watching the video vignette using a questionnaire with standardised and open-ended questions.
Results
Results show only small differences in decision making between British and American physicians in essential aspects of care. About 90% of the UK and US doctors identified CHD as one of the possible diagnoses. Further similarities were found in test ordering and lifestyle advice. Some differences between the US and UK were found in the certainty of the diagnoses, prescribed medications and referral behaviour. There are numerous significant differences between Germany and the other two countries. German physicians would ask fewer questions, they would order fewer tests, prescribe fewer medications and give less lifestyle advice.
Conclusion
Although all physicians in the three countries under study were presented exactly the same patient, some disparities in the diagnostic and patient management decisions were evident. Since other possible influences on doctors treatment decisions are controlled within the experimental design, characteristics of the health care system seem to be a crucial factor within the decision making process
The Calcitonin and Glucocorticoids Combination: Mechanistic Insights into Their Class-Effect Synergy in Experimental Arthritis
PMCID: PMC3564948This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
Bats Use Magnetite to Detect the Earth's Magnetic Field
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints
Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
In-situ evidence for dextral active motion at the Arabia-India plate boundary
International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep
- …
