7,025 research outputs found
Characterizing a configuration interaction excited state using natural transition geminals
We introduce natural transition geminals as a means to qualitatively
understand a transition where double excitations are important. The first two
singlet states of the CH cation are used as an initial example. We
calculate these states with configuration interaction singles (CIS) and
state-averaged Monte Carlo configuration interaction (SA-MCCI). For each method
we compare the important natural transition geminals with the dominant natural
transition orbitals. We then compare SA-MCCI and full configuration interaction
(FCI) with regards to the natural transition geminals using the beryllium atom.
We compare using the natural transition geminals with analyzing the important
configurations in the CI expansion to give the dominant transition for the
beryllium atom and the carbon dimer. Finally we calculate the natural
transition geminals for two electronic excitations of formamide.Comment: 15 pages, 2 figures. Mol. Phys. (2013
Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction
We propose using sum-over-states calculations with the compact wavefunctions
of Monte Carlo configuration interaction to approach accurate values for
higher-order dipole properties up to second hyperpolarizabilities in a
controlled way. We apply the approach to small systems that can generally be
compared with full configuration interaction (FCI) results. We consider
hydrogen fluoride with a 6-31g basis and then look at results, including
frequency dependent properties, in an aug-cc-pVDZ basis. We extend one
calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an
H molecule with multireference character are calculated in an aug-cc-pVDZ
basis. We then investigate this method on a strongly multireference system with
a larger FCI space by modelling the properties of carbon monoxide with a
stretched geometry. The behavior of the approach with increasing basis size is
considered by calculating results for the neon atom using aug-cc-pVDZ to
aug-cc-pVQZ. We finally test if the unusual change in polarizability between
the first two states of molecular oxygen can be reproduced by this method in a
6-31g basis.Comment: 11 pages, 14 figure
Machine Learning Configuration Interaction
We propose the concept of machine learning configuration interaction (MLCI)
whereby an artificial neural network is trained on-the-fly to predict important
new configurations in an iterative selected configuration interaction
procedure. We demonstrate that the neural network can discriminate between
important and unimportant configurations, that it has not been trained on, much
better than by chance. MLCI is then used to find compact wavefunctions for
carbon monoxide at both stretched and equilibrium geometries. We also consider
the multireference problem of the water molecule with elongated bonds. Results
are contrasted with those from other ways of selecting configurations:
first-order perturbation, random selection and Monte Carlo configuration
interaction. Compared with these other serial calculations, this prototype MLCI
is competitive in its accuracy, converges in significantly fewer iterations
than the stochastic approaches, and requires less time for the higher-accuracy
computations.Comment: This document is the unedited Author's version of a Submitted Work
that was subsequently accepted for publication in The Journal of Chemical
Theory and Computation, copyright American Chemical Society after peer
review. To access the final edited and published work see
https://pubs.acs.org/articlesonrequest/AOR-dANIFXJKzRAyR99E6hb
Applying Monte Carlo configuration interaction to transition metal dimers: exploring the balance between static and dynamic correlation
We calculate potential curves for transition metal dimers using Monte Carlo
configuration interaction (MCCI). These results, and their associated
spectroscopic values, are compared with experimental and computational studies.
The multireference nature of the MCCI wavefunction is quantified and we
estimate the important orbitals. We initially consider the ground state of the
chromium dimer. Next we calculate potential curves for Sc where we
contrast the lowest triplet and quintet states. We look at the molybdenum dimer
where we compare non-relativistic results with the partial inclusion of
relativistic effects via effective core potentials, and report results for
scandium nickel.Comment: 9 pages and 8 figure
Effects of wing leading-edge deflection on low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration
Static force tests were conducted in the Langley V/STOL tunnel at a Reynolds number (based on the mean aerodynamic chord) of about 2.0 x 10 to the 6th power for an angle-of-attack range from about - 10 deg to 17 deg and angles of sideslip of 0 and + or - 5 deg. Limited flow visualization studies were also conducted in order to provide a qualitative assessment of leading-edge upwash characteristics
Results of recent NASA research on low-speed aerodynamic characteristics of supersonic cruise aircraft
The relatively low values of lift-curve slope produced by highly swept arrow wings, coupled with the low scrape angle of the fuselage, resulted in relatively low values of take-off and approach lift coefficients. Through the use of more efficient high-lift systems and the application of propulsive-lift concepts, it is possible to optimize the engine-airframe design for maximum range potential and also to provide good low-speed performance. Nose strakes provide significant improvements in directional stability characteristics and the use of a propulsive lateral control system provides a solution to problems associated with inherently low levels of lateral control
Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities
The method of Monte Carlo configuration interaction (MCCI) [1,2] is applied
to the calculation of multipole moments. We look at the ground and excited
state dipole moments in carbon monoxide. We then consider the dipole of NO, the
quadrupole of the nitrogen molecule and of BH. An octupole of methane is also
calculated. We consider experimental geometries and also stretched bonds. We
show that these non-variational quantities may be found to relatively good
accuracy when compared with FCI results, yet using only a small fraction of the
full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are
seen to generally have reasonably good agreement with experiment. We also
investigate the performance of MCCI when applied to ionisation energies and
electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI
results with full configuration-interaction quantum Monte Carlo [3,4] and
`exact' non-relativistic results [3,4]. We show that MCCI could be a useful
alternative for the calculation of atomic ionisation energies however electron
affinities appear much more challenging for MCCI. Due to the small magnitude of
the electron affinities their percentage errors can be high, but with regards
to absolute errors MCCI performs similarly for ionisation energies and electron
affinities.Comment: 12 pages, 20 figure
Population Dynamics in the Penna Model
We build upon the recent steady-state Penna model solution, Phys.Rev.Lett.
89, 288103 (2002), to study the population dynamics within the Penna model. We
show, that any perturbation to the population can be broken into a collection
of modes each of which decay exponentially with its respective time constant.
The long time behaviour of population is therefore likely to be dominated by
the modes with the largest time constants. We confirm our analytical approach
with simulation data.Comment: 6 figure
The X-ray Transient XTE J2012+381
We present optical and infrared observations of the soft X-ray transient
(SXT) XTE J2012+381 and identify the optical counterpart with a faint red star
heavily blended with a brighter foreground star. The fainter star is coincident
with the radio counterpart and appears to show weak H alpha emission and to
have faded between observations. The RXTE/ASM lightcurve of XTE J2012+381 is
unusual for an SXT in that after an extended linear decay, it settled into a
plateau state for about 40 days before undergoing a weak mini-outburst. We
discuss the nature of the object and suggest similarities to long orbital
period SXTs.Comment: 5 pages, 7 postscript figures included, uses mn.sty. Accepted for
publication in MNRA
- …
