5,540 research outputs found

    Studies in the use of cloud type statistics in mission simulation

    Get PDF
    A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model

    Discovery of Very High-Energy Gamma-Ray Radiation from the BL Lac 1ES 0806+524

    Get PDF
    The high-frequency-peaked BL-Lacertae object \objectname{1ES 0806+524}, at redshift z=0.138, was observed in the very-high-energy (VHE) gamma-ray regime by VERITAS between November 2006 and April 2008. These data encompass the two-, and three-telescope commissioning phases, as well as observations with the full four-telescope array. \objectname{1ES 0806+524} is detected with a statistical significance of 6.3 standard deviations from 245 excess events. Little or no measurable variability on monthly time scales is found. The photon spectrum for the period November 2007 to April 2008 can be characterized by a power law with photon index 3.6±1.0stat±0.3sys3.6 \pm 1.0_{\mathrm{stat}} \pm 0.3_{\mathrm{sys}} between \sim300 GeV and \sim700 GeV. The integral flux above 300 GeV is (2.2±0.5stat±0.4sys)×1012cm2s1(2.2\pm0.5_{\mathrm{stat}}\pm0.4_{\mathrm{sys}})\times10^{-12}\:\mathrm{cm}^{2}\:\mathrm{s}^{-1} which corresponds to 1.8% of the Crab Nebula flux. Non contemporaneous multiwavelength observations are combined with the VHE data to produce a broadband spectral energy distribution that can be reasonably described using a synchrotron-self Compton model.Comment: 14 pages, 4 figures, accepted to APJ

    Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with VERITAS

    Get PDF
    We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of the VHE emission is centered near the peak of the coincident 12CO (J = 1-0) emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/- 0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.Comment: 5 pages, 2 figure

    Electro-thermal modelling for plasmonic structures in the TLM Method

    Get PDF
    This paper presents a coupled electromagnetic-thermal model for modelling temperature evolution in nano-size plasmonic heat sources. Both electromagnetic and thermal models are based on the Transmission Line Modelling (TLM) method and are coupled through a nonlinear and dispersive plasma material model. The stability and accuracy of the coupled EM-thermal model is analysed in the context of a nano-tip plasmonic heat source example

    A Multi-wavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution

    Get PDF
    We report results from a multi-wavelength monitoring campaign on Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV and X-ray energies, with supporting observations frequently carried out at optical and radio wavelengths. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales both at X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux during a giant flare in 2004. Such a difference in the development of the flare presents a further challenge to the emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in optical seems to be comparable to that in radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution (SED) of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured SEDs with a one-zone SSC model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed. (Abridged)Comment: 32 pages, 12 figures, to appear in Ap

    Multiwavelength Observations of 1ES 1959+650, One Year After the Strong Outburst of 2002

    Get PDF
    In April-May 2003, the blazar 1ES 1959+650 showed an increased level of X-ray activity. This prompted a multiwavelength observation campaign with the Whipple 10 m gamma-ray telescope, the Rossi X-ray Timing Explorer, the Bordeaux Optical Observatory, and the University of Michigan Radio Astrophysical Observatory. We present the multiwavelength data taken from May 2, 2003 to June 7, 2003 and compare the source characteristics with those measured during observations taken during the years 2000 and 2002. The X-ray observations gave a data set with high signal-to-noise light curves and energy spectra; however, the gamma-ray observations did not reveal a major TeV gamma-ray flare. Furthermore, we find that the radio and optical fluxes do not show statistically significant deviations from those measured during the 2002 flaring periods. While the X-ray flux and X-ray photon index appear correlated during subsequent observations, the apparent correlation evolved significantly between the years 2000, 2002, and 2003. We discuss the implications of this finding for the mechanism that causes the flaring activity.Comment: 17 pages, 6 figures, 2 table

    Multiwavelength Observations of the Blazar Mrk 421 in December 2002 and January 2003

    Get PDF
    We report on a multiwavelength campaign on the TeV gamma-ray blazar Markarian (Mrk) 421 performed during December 2002 and January 2003. These target of opportunity observations were initiated by the detection of X-ray and TeV gamma-ray flares with the All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer (RXTE) and the 10 m Whipple gamma-ray telescope.The campaign included observational coverage in the radio (University of Michigan Radio Astronomy Observatory), optical (Boltwood, La Palma KVA 0.6m, WIYN 0.9m), X-ray (RXTE pointed telescopes), and TeV gamma-ray (Whipple and HEGRA) bands. At TeV energies, the observations revealed several flares at intermediate flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula. While the time averaged spectrum can be fitted with a single power law of photon index Gamma =2.8, we find some evidence for spectral variability. Confirming earlier results, the campaign reveals a rather loose correlation between the X-ray and TeV gamma-ray fluxes. In one case, a very strong X-ray flare is not accompanied by a comparable TeV gamma-ray flare. Although the source flux was variable in the optical and radio bands, the sparse sampling of the optical and radio light curves does not allow us to study the correlation properties in detail. We present a simple analysis of the data with a synchrotron-self Compton model, emphasizing that models with very high Doppler factors and low magnetic fields can describe the data.Comment: Accepted for publication in the Astrophysical Journa

    Neurology

    Get PDF
    Contains research objectives and reports on six research projects.U.S. Public Health Service (B-3055)U.S. Public Health Service (B-3090)Office of Naval Research (Nonr-1841 (70))Air Force (AF33(616)-7588)Air Force (AFAFOSR-155-63)Air Force (AFAFOSR-155-63)Army Chemical Corps (DA-18-108-405-Cml-942)National Science Foundation (Grant G-16526

    Status of the VERITAS Observatory

    Get PDF
    VERITAS, an Imaging Atmospheric Cherenkov Telescope (IACT) system for gammma-ray astronomy in the GeV-TeV range, has recently completed its first season of observations with a full array of four telescopes. A number of astrophysical gamma-ray sources have been detected, both galactic and extragalactic, including sources previously unknown at TeV energies. We describe the status of the array and some highlight results, and assess the technical performance, sensitivity and shower reconstruction capabilities.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic
    corecore