7,702 research outputs found
Light scattering from three-level systems: The T-matrix of a point-dipole with gain
We present an extension of the T-matrix approach to scattering of light by a
three-level system, using a description based on a Master equation. More
particularly, we apply our formalism to calculate the T-matrix of a pumped
three-level atom, providing an exact and analytical expression describing the
influence of a pump on the light scattering properties of an atomic three-level
system
Skyrmion Multi-Walls
Skyrmion walls are topologically-nontrivial solutions of the Skyrme system
which are periodic in two spatial directions. We report numerical
investigations which show that solutions representing parallel multi-walls
exist. The most stable configuration is that of the square -wall, which in
the limit becomes the cubically-symmetric Skyrme crystal. There is
also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur
Quantum phase transitions of light
Recently, condensed matter and atomic experiments have reached a length-scale
and temperature regime where new quantum collective phenomena emerge. Finding
such physics in systems of photons, however, is problematic, as photons
typically do not interact with each other and can be created or destroyed at
will. Here, we introduce a physical system of photons that exhibits strongly
correlated dynamics on a meso-scale. By adding photons to a two-dimensional
array of coupled optical cavities each containing a single two-level atom in
the photon-blockade regime, we form dressed states, or polaritons, that are
both long-lived and strongly interacting. Our zero temperature results predict
that this photonic system will undergo a characteristic Mott insulator
(excitations localised on each site) to superfluid (excitations delocalised
across the lattice) quantum phase transition. Each cavity's impressive photon
out-coupling potential may lead to actual devices based on these quantum
many-body effects, as well as observable, tunable quantum simulators. We
explicitly show that such phenomena may be observable in micro-machined diamond
containing nitrogen-vacancy colour centres and superconducting microwave
strip-line resonators.Comment: 11 pages, 5 figures (2 in colour
Low-temperature specific heat in hydrogenated and Mn-doped La(Fe, Si)(13)
It is now well established that the paramagnetic-to-ferromagnetic transition in the magnetocaloric La(FeSi)13 is a cooperative effect involving spin, charge, and lattice degrees of freedom. However, the influence of this correlated behavior on the ferromagnetic state is as yet little studied. Here we measure the specific heat at low temperatures in a systematic set of LaFexMnySiz samples, with and without hydrogen, to extract the Sommerfeld coefficient, the Debye temperature, and the spin-wave stiffness. Substantial and systematic changes in magnitude of the Sommerfeld coefficient are observed with Mn substitution and introduction of hydrogen, showing that over and above the changes to the density of states at the Fermi energy there are significant enhanced d-band electronic interactions at play. The Sommerfeld coefficient is found to be 90–210mJmol−1K−2, unusually high compared to that expected from band-structure calculations. The Debye temperature determined from the specific heat measurement is insensitive to Mn and Si doping but increases when hydrogen is introduced into the system. The Sommerfeld coefficient is reduced in magnetic field for all compositions that have a measurable spin-wave contribution. These results move our understanding of the cooperative effects forward in this important and interesting class of materials significantly and provide a basis for future theoretical development
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
Predicting the long-term impact of antiretroviral therapy scale-up on population incidence of tuberculosis.
OBJECTIVE: To investigate the impact of antiretroviral therapy (ART) on long-term population-level tuberculosis disease (TB) incidence in sub-Saharan Africa. METHODS: We used a mathematical model to consider the effect of different assumptions about life expectancy and TB risk during long-term ART under alternative scenarios for trends in population HIV incidence and ART coverage. RESULTS: All the scenarios we explored predicted that the widespread introduction of ART would initially reduce population-level TB incidence. However, many modelled scenarios projected a rebound in population-level TB incidence after around 20 years. This rebound was predicted to exceed the TB incidence present before ART scale-up if decreases in HIV incidence during the same period were not sufficiently rapid or if the protective effect of ART on TB was not sustained. Nevertheless, most scenarios predicted a reduction in the cumulative TB incidence when accompanied by a relative decline in HIV incidence of more than 10% each year. CONCLUSIONS: Despite short-term benefits of ART scale-up on population TB incidence in sub-Saharan Africa, longer-term projections raise the possibility of a rebound in TB incidence. This highlights the importance of sustaining good adherence and immunologic response to ART and, crucially, the need for effective HIV preventive interventions, including early widespread implementation of ART
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
Coherent quantum phase slip
A hundred years after discovery of superconductivity, one fundamental
prediction of the theory, the coherent quantum phase slip (CQPS), has not been
observed. CQPS is a phenomenon exactly dual to the Josephson effect: whilst the
latter is a coherent transfer of charges between superconducting contacts, the
former is a coherent transfer of vortices or fluxes across a superconducting
wire. In contrast to previously reported observations of incoherent phase slip,
the CQPS has been only a subject of theoretical study. Its experimental
demonstration is made difficult by quasiparticle dissipation due to gapless
excitations in nanowires or in vortex cores. This difficulty might be overcome
by using certain strongly disordered superconductors in the vicinity of the
superconductor-insulator transition (SIT). Here we report the first direct
observation of the CQPS in a strongly disordered indium-oxide (InOx)
superconducting wire inserted in a loop, which is manifested by the
superposition of the quantum states with different number of fluxes. Similarly
to the Josephson effect, our observation is expected to lead to novel
applications in superconducting electronics and quantum metrology.Comment: 14 pages, 3 figure
Should Research Ethics Encourage the Production of Cost-Effective Interventions?
This project considers whether and how research ethics can contribute to the provision of cost-effective medical interventions. Clinical research ethics represents an underexplored context for the promotion of cost-effectiveness. In particular, although scholars have recently argued that research on less-expensive, less-effective interventions can be ethical, there has been little or no discussion of whether ethical considerations justify curtailing research on more expensive, more effective interventions. Yet considering cost-effectiveness at the research stage can help ensure that scarce resources such as tissue samples or limited subject popula- tions are employed where they do the most good; can support parallel efforts by providers and insurers to promote cost-effectiveness; and can ensure that research has social value and benefits subjects. I discuss and rebut potential objections to the consideration of cost-effectiveness in research, including the difficulty of predicting effectiveness and cost at the research stage, concerns about limitations in cost-effectiveness analysis, and worries about overly limiting researchers’ freedom. I then consider the advantages and disadvantages of having certain participants in the research enterprise, including IRBs, advisory committees, sponsors, investigators, and subjects, consider cost-effectiveness. The project concludes by qualifiedly endorsing the consideration of cost-effectiveness at the research stage. While incorporating cost-effectiveness considerations into the ethical evaluation of human subjects research will not on its own ensure that the health care system realizes cost-effectiveness goals, doing so nonetheless represents an important part of a broader effort to control rising medical costs
- …
