84 research outputs found
The Australian dingo is an early offshoot of modern breed dogs.
Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo
Canfam GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C
Background: The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility
and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training. Such diseases are of particular concern when they occur later in life, and fully trained animals are not able to continue their duties.
Findings: Here, we provide the draft genome sequence of a healthy German Shepherd female as a
reference for future disease and evolutionary studies. We generated this improved canid reference genome (CanFam GSD)
utilizing a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. The GSD
assembly is ∼80 times as contiguous as the current canid reference genome (20.9 vs 0.267 Mb contig N50), containing far
fewer gaps (306 vs 23,876) and fewer scaffolds (429 vs 3,310) than the current canid reference genome CanFamv3.1. Two
chromosomes (4 and 35) are assembled into single scaffolds with no gaps. BUSCO analyses of the genome assembly results
show that 93.0% of the conserved single-copy genes are complete in the GSD assembly compared with 92.2% for CanFam
v3.1. Homology-based gene annotation increases this value to ∼99%. Detailed examination of the evolutionarily important
pancreatic amylase region reveals that there are most likely 7 copies of the gene, indicative of a duplication of 4 ancestral
copies and the disruption of 1 copy.
Conclusions: GSD genome assembly and annotation were produced with major
improvement in completeness, continuity, and quality over the existing canid reference. This resource will enable further
research related to canine diseases, the evolutionary relationships of canids, and other aspects of canid biology
Instruction for Web Searching: An Empirical Study
Users searching the Web have difficulty using search engines and developing queries. Searches tend to be simple, and Boolean operators are used infrequently and incorrectly. Users also are unaware that search engines operate differently from other information retrieval systems. Yet, there is little research on effective instructional methods for teaching users how to search the Web. Research has looked at instructional methods for other types of information retrieval, but these systems differ a great deal from the Web. The purpose of this study was to determine what undergraduate students know about search engines and to examine instructional treatments to aid searchers in using a search engine.</jats:p
Effects of branch bending on the levels of carbohydrates and phenolic compounds in ‘Conference’ pear leaves
Phenolic compounds in the fruit of different varieties of Chinese jujube (<i>Ziziphus jujuba</i>Mill.)
The influence of ethanol concentration on content of total and individual phenolics in walnut alcoholic drink
- …
