1,669 research outputs found
Automatic bio-sample bacteria detection system
Electromechanical device analyzes urine specimens in 15 minutes and processes one sample per minute. Instrument utilizes bioluminescent reaction between luciferase-luciferin mixture and adenosine triphosphate (ATP) to determine number of bacteria present in the sample. Device has potential application to analysis of other body fluids
Automatic instrument for chemical processing to detect microorganism in biological samples by measuring light reactions
An automated apparatus is reported for sequentially assaying urine samples for the presence of bacterial adenosine triphosphate (ATP) that comprises a rotary table which carries a plurality of sample containing vials and automatically dispenses fluid reagents into the vials preparatory to injecting a light producing luciferase-luciferin mixture into the samples. The device automatically measures the light produced in each urine sample by a bioluminescence reaction of the free bacterial adenosine triphosphate with the luciferase-luciferin mixture. The light measured is proportional to the concentration of bacterial adenosine triphosphate which, in turn, is proportional to the number of bacteria present in the respective urine sample
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Detection of (1,3)-β-d-Glucan in Cerebrospinal Fluid in Histoplasma Meningitis
The diagnosis of central nervous system (CNS) histoplasmosis is often difficult. Although cerebrospinal fluid (CSF) (1,3)-β-d-glucan (BDG) is available as a biological marker for the diagnosis of fungal meningitis, there are limited data on its use for the diagnosis of Histoplasma meningitis. We evaluated CSF BDG detection, using the Fungitell assay, in patients with CNS histoplasmosis and controls. A total of 47 cases and 153 controls were identified. The control group included 13 patients with a CNS fungal infection other than histoplasmosis. Forty-nine percent of patients with CNS histoplasmosis and 43.8% of controls were immunocompromised. The median CSF BDG level was 85 pg/ml for cases, compared to <31 pg/ml for all controls (P < 0.05) and 82 pg/ml for controls with other causes of fungal meningitis (P = 0.27). The sensitivity for detection of BDG in CSF was 53.2%, whereas the specificity was 86.9% versus all controls and 46% versus other CNS fungal infections. CSF BDG levels of ≥80 pg/ml are neither sensitive nor specific to support a diagnosis of Histoplasma meningitis
Driving Revenue For Organizations Through Multiple Sales Channels
This research paper focuses on the sales industry from how sales became a profession to sales as we know it today. Driving revenue is the main goal of a for profit company or organization and how this goal can be achieved using one or more sales channels will be discussed within this research. This research seeks to determine if by utilizing multiple sales channels within an organization to sell its products and services, is that organization more profitable as they have more avenues to be able to reach more potential customers? While there are many sales channels that can be used to drive revenue for an organization, the two most common sales channels used today are direct sales channels and indirect sales channels. The success of the organization, the leadership team, and the sales team will depend on multiple variables discussed within this research such as hiring and keeping the right salespeople within the organization, the traits of great salespeople as well as the benefits and downsides to having multiple sales channels. The COVID-19 pandemic and its effects on the sales industry as well as the future of the sales industry will also be discussed within this research.
Keywords: sales, direct sales, indirect sales, channel sales, sales channel
On malfunctioning software
Artefacts do not always do what they are supposed to, due to a variety of reasons, including manufacturing problems, poor maintenance, and normal wear-and-tear. Since software is an artefact, it should be subject to malfunctioning in the same sense in which other artefacts can malfunction. Yet, whether software is on a par with other artefacts when it comes to malfunctioning crucially depends on the abstraction used in the analysis. We distinguish between “negative” and “positive” notions of malfunction. A negative malfunction, or dysfunction, occurs when an artefact token either does not (sometimes) or cannot (ever) do what it is supposed to. A positive malfunction, or misfunction, occurs when an artefact token may do what is supposed to but, at least occasionally, it also yields some unintended and undesirable effects. We argue that software, understood as type, may misfunction in some limited sense, but cannot dysfunction. Accordingly, one should distinguish software from other technical artefacts, in view of their design that makes dysfunction impossible for the former, while possible for the latter
Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments
This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02
Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics
A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 μmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future
Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder
The first systematic observations of the middle atmosphere of Mars (35–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the data set of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian general circulation model to extend our analysis, we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons
Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping
The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods
- …
