642 research outputs found
Jordan-Wigner Approach to Dynamic Correlations in 2D Spin-1/2 Models
We discuss the dynamic properties of the square-lattice spin-1/2 XY model
obtained using the two-dimensional Jordan-Wigner fermionization approach. We
argue the relevancy of the fermionic picture for interpreting the neutron
scattering measurements in the two-dimensional frustrated quantum magnet
Cs_2CuCl_4.Comment: Presented at 12-th Czech and Slovak Conference on Magnetism,
Ko\v{s}ice, 12-15 July 200
Quantum phase transition in the Plaquette lattice with anisotropic spin exchange
I study the influence of anisotropic spin exchange on a quantum phase
transition in the Plaquette lattice driven by the purely quantum effect of
singlet formation. I study the influence of i) a Dzyaloshinskii-Moriya exchange
and ii) four spin exchange on the transition point by evaluating spin--spin
correlations and the spin gap with exact diagonalization. The results point to
a stabilization of the Neel-like long range order when the
Dzyaloshinskii-Moriya exchange is added, whereas the four-spin exchange might
stabilize the singlet order as well as the Neel-like order depending on its
strength.Comment: LaTeX article with 4 pages and 3 figures, prepared with material for
the ICM 200
The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field
Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF)
Cs2CuCl4 have been measured as a function of magnetic field using neutron
scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D
incommensurate ordering. Fields greater than Bc =1.66 T, but less than the
field (~8 T) required to fully align the spins, are observed to decouple the
chains, and the system enters a disordered intermediate-field phase (IFP). The
IFP excitations are in agreement with the predictions of Muller et al. for the
1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the
Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave
theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published
in PRL, e-mail comments to [email protected]
Theoretical Analysis of the Reduction of Neel Temperature in La(CuZn(or Mg)O
Using Tyablikov's decoupling approximation, we calculate the initial
suppression rate of the Neel temperature, , in a quasi two-dimensional diluted Heisenberg antiferromagnet with
nonmagnetic impurities of concentration . In order to explain an
experimental fact that of the Zn-substitution is different
from of the Mg-substitution, we propose a model in which
impurity substitution reduces the intra-plane exchange couplings surrounding
impurities, as well as dilution of spin systems. The decrease of 12% in
exchange coupling constants by Zn substitution and decrease of 6% by Mg
substitution explain those two experimental results, when an appropriate value
of the interplane coupling is used.Comment: 2 pages, 3 figure
Finite-temperature perturbation theory for quasi-one-dimensional spin-1/2 Heisenberg antiferromagnets
We develop a finite-temperature perturbation theory for quasi-one-dimensional
quantum spin systems, in the manner suggested by H.J. Schulz (1996) and use
this formalism to study their dynamical response. The corrections to the
random-phase approximation formula for the dynamical magnetic susceptibility
obtained with this method involve multi-point correlation functions of the
one-dimensional theory on which the random-phase approximation expansion is
built. This ``anisotropic'' perturbation theory takes the form of a systematic
high-temperature expansion. This formalism is first applied to the estimation
of the N\'eel temperature of S=1/2 cubic lattice Heisenberg antiferromagnets.
It is then applied to the compound CsCuCl, a frustrated S=1/2
antiferromagnet with a Dzyaloshinskii-Moriya anisotropy. Using the next leading
order to the random-phase approximation, we determine the improved values for
the critical temperature and incommensurability. Despite the non-universal
character of these quantities, the calculated values are different by less than
a few percent from the experimental values for both compounds.Comment: 11 pages, 6 figure
Fermi-surface topology and the effects of intrinsic disorder in a class of charge-transfer salts containing magnetic ions: β" — (BEDT — TTF)₄ [(H₃O)M(C₂O₄)₃]Υ (M = Ga, Cr, Fr; Υ = C₅H₅N)
We report high-field magnetotransport measurements on β" — (BEDT — TTF)₄ [(H₃O)M(C₂O₄)₃]Υ, where M =Ga, Cr and Fe and Υ = C₅H₅N. We observe similar Shubnikov–de Haas oscillations in all compounds, attributable to four quasi-two-dimensional Fermi-surface pockets, the largest of which corresponds to a cross-sectional area ≈ 8.5% of the Brillouin zone. The cross-sectional areas of the pockets are in agreement with the expectations for a compensated semimetal, and the corresponding effective masses are ∼mₑ, rather small compared to those of other BEDT-TTF salts. Apart from the case of the smallest Fermi-surface pocket, varying the M ion seems to have little effect on the overall Fermi-surface topology or on the effective masses. Despite the fact that all samples show quantum oscillations at low temperatures, indicative of Fermi liquid behavior, the sample and temperature dependence of the interlayer resistivity suggest that these systems are intrinsically inhomogeneous. It is thought that intrinsic tendency to disorder in the anions and/or the ethylene groups of the BEDT-TTF molecules leads to the coexistence of insulating and metallic states at low temperatures. A notional phase diagram is given for the general family of β" — (BEDT — TTF)₄ [(H₃O)M(C₂O₄)₃]Υ salts
Suppression of orbital ordering by chemical pressure in FeSe1-xSx
We report a high-resolution angle-resolved photo-emission spectroscopy study
of the evolution of the electronic structure of FeSe1-xSx single crystals.
Isovalent S substitution onto the Se site constitutes a chemical pressure which
subtly modifies the electronic structure of FeSe at high temperatures and
induces a suppression of the tetragonal-symmetry-breaking structural transition
temperature from 87K to 58K for x=0.15. With increasing S substitution, we find
smaller splitting between bands with dyz and dxz orbital character and weaker
anisotropic distortions of the low temperature Fermi surfaces. These effects
evolve systematically as a function of both S substitution and temperature,
providing strong evidence that an orbital ordering is the underlying order
parameter of the structural transition in FeSe1-xSx. Finally, we detect the
small inner hole pocket for x=0.12, which is pushed below the Fermi level in
the orbitally-ordered low temperature Fermi surface of FeSe.Comment: Latex, 5 pages, 4 figure
Kitaev interactions between j=1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations
NaIrO, a honeycomb 5 oxide, has been recently identified as a
potential realization of the Kitaev spin lattice. The basic feature of this
spin model is that for each of the three metal-metal links emerging out of a
metal site, the Kitaev interaction connects only spin components perpendicular
to the plaquette defined by the magnetic ions and two bridging ligands. The
fact that reciprocally orthogonal spin components are coupled along the three
different links leads to strong frustration effects and nontrivial physics.
While the experiments indicate zigzag antiferromagnetic order in NaIrO,
the signs and relative strengths of the Kitaev and Heisenberg interactions are
still under debate. Herein we report results of ab initio many-body electronic
structure calculations and establish that the nearest-neighbor exchange is
strongly anisotropic with a dominant ferromagnetic Kitaev part, whereas the
Heisenberg contribution is significantly weaker and antiferromagnetic. The
calculations further reveal a strong sensitivity to tiny structural details
such as the bond angles. In addition to the large spin-orbit interactions, this
strong dependence on distortions of the IrO plaquettes singles out the
honeycomb 5 oxides as a new playground for the realization of
unconventional magnetic ground states and excitations in extended systems.Comment: 13 pages, 2 tables, 3 figures, accepted in NJ
- …
