565 research outputs found

    Quando se inicia o processo de alfabetização?

    Get PDF
    Embora a aprendizagem informal da língua escrita na fase pré-escolarjá fosse observada desde o século XIX, muitos anos se passaram até que fosse reconhecida. Com as pesquisas lideradas por Vygotsky, Luria, Ferreiro e os estudos sobre letramento, foi possível recuperar a gênese da alfabetização e considerar suas implicações para o ensino. Assim, importa perguntar: Como compreender as primeiras escritas? Como o reconhecimento delas pode afetar as concepções sobre a língua escrita? Que condições favorecem a construção da escrita? Que implicações as aprendizagens pré-escolares trazem para as práticas pedagógicas e para as políticas de alfabetização? Com o objetivo de aprofundar o entendimento destas questões, o artigo vale - se de um estudo de caso sobre a produção textual de um menino de quatro anos, configurando-se como mais um a iniciativa para subsidiar os debates sobre a articulação entre ensino e aprendizagem.Although the informal acquisition of writi ng skills in preschool had already been observed since the nineteenth century, many years passed before it was officially recognized. By researches conducted by Vygotsky, Luria, Ferreiro and other studies on literacy, it was possible to retrieve when the i nception of the language learning process took place and to take into account its implications for education. Therefore, it is important to ask: How do we understand the early writings? How can recognizing them affect the teacher’s concept of written langu age? What conditions favour the writing production? What implications does the preschool learning process bring to pedagogical practices and literacy policies? With the goal of further deepening the understanding of those matters, the article makes use of a case study on the textual production of a four - year - old boy, which represents one more initiative for supporting the debates on the articulation between education and learning process. Keywords : Language learning process; literacy; written language; education

    Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System

    Get PDF
    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50–100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair

    Identification and detection of iha subtypes in LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains isolated from humans, cattle and food

    Get PDF
    LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains are important cause of infection in humans and they should be included in the public health surveillance systems. Some isolates have been associated with haemolytic uremic syndrome (HUS) but the mechanisms of pathogenicity are is a field continuos broadening of knowledge. The IrgA homologue adhesin (Iha), encoded by iha, is an adherence-conferring protein and also a siderophore receptor distributed among LEE-negative STEC strains. This study reports the presence of different subtypes of iha in LEE-negative STEC strains. We used genomic analyses to design PCR assays for detecting each of the different iha subtypes and also, all the subtypes simultaneously. LEE-negative STEC strains were designed and different localizations of this gene in STEC subgroups were examinated.Genomic analysis detected iha in a high percentage of LEE-negative STEC strains. These strains generally carried iha sequences similar to those harbored by the Locus of Adhesion and Autoaggregation (LAA) or by the plasmid pO113. Besides, almost half of the strains carried both subtypes. Similar results were observed by PCR, detecting iha LAA in 87% of the strains (117/135) and iha pO113 in 32% of strains (43/135). Thus, we designed PCR assays that allow rapid detection of iha subtypes harbored by LEE-negative strains. These results highlight the need to investigate the individual and orchestrated role of virulence genes that determine the STEC capacity of causing serious disease, which would allow for identification of target candidates to develop therapies against HUS.Fil: Colello, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Krüger, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Velez, María Victoria. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Del Canto, Felipe. Universidad de Chile. Facultad de Medicina. Instituto de Ciencias Biomédicas; ChileFil: Etcheverría, Analía Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Vidal, Roberto. Universidad de Chile. Facultad de Medicina. Instituto de Ciencias Biomédicas; Chile. Universidad de Chile. Facultad de Medicina. Instituto Milenio de Inmunología e Inmunoterapia; ChileFil: Padola, Nora Lía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; Argentin

    Pool of Saints (version 1 )

    Get PDF

    Alien Registration- Colello, Mauro (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/25802/thumbnail.jp

    Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC)

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolyticuremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2. Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1/intl2, highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle

    Alien Registration- Colello, Marco (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/25876/thumbnail.jp

    Alien Registration- Colello, Mauro (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/25802/thumbnail.jp
    corecore