83 research outputs found

    Micelle fragmentation and wetting in confined flow

    Full text link
    We use coarse-grained molecular-dynamics (MD) simulations to investigate the structural and dynamical properties of micelles under non-equilibrium Poiseuille flow in a nano-confined geometry. The effects of flow, confinement, and the wetting properties of die-channel walls on spherical sodium dodecyl sulfate (SDS) micelles are explored when the micelle is forced through a die-channel slightly smaller than its equilibrium size. Inside the channel, the micelle may fragment into smaller micelles. In addition to the flow rate, the wettability of the channel surfaces dictates whether the micelle fragments and determines the size of the daughter micelles: The overall behavior is determined by the subtle balance between hydrodynamic forces, micelle-wall interactions and self-assembly forces

    Hydrodynamic forces on steady and oscillating porous particles

    Full text link
    We derive new analytical results for the hydrodynamic force exerted on a sinusoidally oscillating porous shell and a sphere of uniform density in the Stokes limit. The coupling between the spherical particle and the solvent is done using the Debye-Bueche-Brinkman (DBB) model, i.e. by a frictional force proportional to the local velocity difference between the permeable particle and the solvent. We compare our analytical results and existing dynamic theories to Lattice-Boltzmann simulations of full Navier-Stokes equations for the oscillating porous particle. We find our analytical results to agree with simulations over a broad range of porosities and frequencies

    Elastic response of a nematic liquid crystal to an immersed nanowire

    Full text link
    We study the immersion of a ferromagnetic nanowire within a nematic liquid crystal using a lattice Boltzmann algorithm to solve the full three-dimensional equations of hydrodynamics. We present an algorithm for including a moving boundary, to simulate a nanowire, in a lattice Boltzmann simulation. The nematic imposes a torque on a wire that increases linearly with the angle between the wire and the equilibrium direction of the director field. By rotation of these nanowires, one can determine the elastic constants of the nematic.Comment: 10 pages, 8 figure

    One- and two-particle dynamics in microfluidic T-junctions

    Get PDF
    Advances in precise focusing of colloidal particles in microfluidic systems open up the possibility of using microfluidic junctions for particle separation and filtering applications. We present a comprehensive numerical study of the dynamics of solid and porous microparticles in T-shaped junctions. Good agreement with experimental data is obtained on the location of particle-separating streamlines for single solid particles with realistic parameters corresponding to the experiments. We quantify the changes in the position of the separating line for porous, partially penetrable colloids. A prediction of the full phase diagram for particle separation is presented in the case of two successive particles entering a T-junction. Our results suggest the intriguing possibility of using the one- and two-particle T-junctions as logic gates.Peer reviewe

    Biopolymer Filtration in Corrugated Nanochannels

    Get PDF
    We examine pressure-driven nonequilibrium transport of linear, circular, and star polymers through a nanochannel containing a rectangular pit with full hydrodynamic interactions and thermal fluctuations. We demonstrate that with sufficiently small pressure differences, there is contour length-dependent entropic trapping of the polymer in the pit when the pit and the polymer sizes are compatible. This is due to competition between flow and chain relaxation in the pit, which leads to a nonmonotonic dependence of the polymer mobility on its size and should aid in the design of nanofiltration devices based on the polymer size and shape.Peer reviewe
    corecore