83 research outputs found
Micelle fragmentation and wetting in confined flow
We use coarse-grained molecular-dynamics (MD) simulations to investigate the
structural and dynamical properties of micelles under non-equilibrium
Poiseuille flow in a nano-confined geometry. The effects of flow, confinement,
and the wetting properties of die-channel walls on spherical sodium dodecyl
sulfate (SDS) micelles are explored when the micelle is forced through a
die-channel slightly smaller than its equilibrium size. Inside the channel, the
micelle may fragment into smaller micelles. In addition to the flow rate, the
wettability of the channel surfaces dictates whether the micelle fragments and
determines the size of the daughter micelles: The overall behavior is
determined by the subtle balance between hydrodynamic forces, micelle-wall
interactions and self-assembly forces
Hydrodynamic forces on steady and oscillating porous particles
We derive new analytical results for the hydrodynamic force exerted on a
sinusoidally oscillating porous shell and a sphere of uniform density in the
Stokes limit. The coupling between the spherical particle and the solvent is
done using the Debye-Bueche-Brinkman (DBB) model, i.e. by a frictional force
proportional to the local velocity difference between the permeable particle
and the solvent. We compare our analytical results and existing dynamic
theories to Lattice-Boltzmann simulations of full Navier-Stokes equations for
the oscillating porous particle. We find our analytical results to agree with
simulations over a broad range of porosities and frequencies
Elastic response of a nematic liquid crystal to an immersed nanowire
We study the immersion of a ferromagnetic nanowire within a nematic liquid
crystal using a lattice Boltzmann algorithm to solve the full three-dimensional
equations of hydrodynamics. We present an algorithm for including a moving
boundary, to simulate a nanowire, in a lattice Boltzmann simulation. The
nematic imposes a torque on a wire that increases linearly with the angle
between the wire and the equilibrium direction of the director field. By
rotation of these nanowires, one can determine the elastic constants of the
nematic.Comment: 10 pages, 8 figure
One- and two-particle dynamics in microfluidic T-junctions
Advances in precise focusing of colloidal particles in microfluidic systems open up the possibility of using microfluidic junctions for particle separation and filtering applications. We present a comprehensive numerical study of the dynamics of solid and porous microparticles in T-shaped junctions. Good agreement with experimental data is obtained on the location of particle-separating streamlines for single solid particles with realistic parameters corresponding to the experiments. We quantify the changes in the position of the separating line for porous, partially penetrable colloids. A prediction of the full phase diagram for particle separation is presented in the case of two successive particles entering a T-junction. Our results suggest the intriguing possibility of using the one- and two-particle T-junctions as logic gates.Peer reviewe
Biopolymer Filtration in Corrugated Nanochannels
We examine pressure-driven nonequilibrium transport of linear, circular, and star polymers through a nanochannel containing a rectangular pit with full hydrodynamic interactions and thermal fluctuations. We demonstrate that with sufficiently small pressure differences, there is contour length-dependent entropic trapping of the polymer in the pit when the pit and the polymer sizes are compatible. This is due to competition between flow and chain relaxation in the pit, which leads to a nonmonotonic dependence of the polymer mobility on its size and should aid in the design of nanofiltration devices based on the polymer size and shape.Peer reviewe
- …
