41 research outputs found

    The resistance of laminated glass to blast pressure loading and the coefficients for single degree of freedom analysis of laminated glass

    Get PDF
    For terrorist explosions or accidental explosions in urban areas, the greatest threat of death and serious injury comes from the effects of glass fragments. Laminated glazing has been proven by trials and experience of actual events to eliminate the risk of significant fragment injury to people behind the glazing, and also to provide substantial protection from blast injury effects, provided that after cracking it remains as a continuous membrane substantially attached to the supporting frame. However, design of laminated glazing is currently based on extrapolation from testing, with limited understanding of the material behaviour that underlies the behaviour under blast loading. This thesis presents an investigation into the application of a simplified method of dynamic analysis for laminated glass, the development of parameters derived from the properties of the materials in laminated glass and the behaviour of laminated glass systems that can be applied to the design of laminated glazing to resist blast loading. The development of the single degree of freedom method for analysis of dynamic response is reviewed from its inception use for analysis of glazing, through its adaptation for reinforced concrete analysis, to its modern use for analysis of glazing. Although the principles of the method are widely applicable, some procedures established for elastic-plastic reinforced concrete analysis in the 1950s are not appropriate for glazing, and should be treated with care. Coefficients for analysis of reinforced concrete date from approximate analyses in the 1950s and 60s and are not accurate. New calculations using advanced yield line models and finite element analysis have been used to provide alternative coefficients for rectangular panels supported on four edges. The elastic analyses for reinforced concrete are linear because they are based on small-deflection theory. Deflections of most uncracked glass panes exceed the limits of this theory. The development of practical non-linear large-deflection analyses in the 1980s was dependent on numerical methods and computer analysis, but they have previously only been applied to resistance and cracking. New non-linear finite element analyses refine the existing resistance data, and data from the same calculations has been used to derive large deflection single degree of freedom parameters for dynamic analysis and to assess the reaction distribution. The cracking of glass arises from small flaws in its surface, and can be very variable in its onset. In addition, the strength is sensitive to the loading rate. Statistical approaches have been based on quasi-static tests, either assuming a normal distribution, or using a more complex Weibull distribution. However, statistical refinement gains little, as strengths then need to be increased for the faster loading under blast. Back-analysis of extensive blast tests had been used to establish deterministic lower bound design cracking strengths for different types of glass. These have been applied in this thesis for design, and back-analysis of blast trials indicates that the design cracking strengths are lower bound. Formulae for a monolithic pane with equivalent behaviour to a laminated glass pane are proposed that would allow the large deflection analysis to be applied to laminated glass up to cracking of the final ply. The results of some blast trials of uncracked laminated glass are reported which are consistent with an equivalent monolithic analysis. They indicate that laminated glass under blast can be taken as fully composite to temperatures approaching 20ºC, but that it is not fully composite at 29ºC or above. Unfortunately, there is currently no data to indicate the performance in the critical temperature range between. After laminated glass cracks, the resistance is provided by an interlayer of the viscoelastic polymer, Polyvinyl Butyral. Though research is ongoing, non-linear viscoelastic material models for finite element analyses have not yet been developed to the point that they can reproduce the full range of behaviour observed in the tensile tests over the range of temperatures and elongation rates which are reported in the thesis. Instead, the results of the tensile tests are fitted to a simple bilinear material model by back-analysis of the tensile tests to give three stiffness and strength parameters that vary with temperature and strain rate. Non-linear finite element analyses of PVB membranes corresponding to two series of laminated glass blast trials are used to produce single degree of freedom parameters for membrane response. The blast trials are reported, and back-analysis of the deflection histories is used to estimate the ratio of the PVB material strain rates and the observed laminated glass strain rates for the best-fit calculated response. This ratio, found to have a mean value of 3.8, is expected to reflect the stiffening of PVB by attached glass fragments, together with other factors. However, the scatter in the data is large, so the reliability of this figure should be viewed with this in mind. Laminated glass providing blast protection is normally maintained close to room temperature, so a design based on a room temperature of 23ºC is proposed, using single degree of freedom data that is a composite of the uncracked data up to cracking and the membrane data after that point. For normal laminated glazing where the observed strain rate is expected to be about 10 /s, design membrane properties based on a PVB strain rate of 40 /s are proposed, but this may need to be modified for other cases. Typical design cases for marginal behaviour are analysed on this basis, and also for material properties at temperatures 6ºC higher and lower than 23ºC, to assess the sensitivity of the design to likely temperature variations. These indicate that a margin of 16-21% may be needed on deflection limits to allow for temperature increases, but that the calculated deflections would still be below the maximum deflections observed in the trials without PVB failure. The analyses indicate that the peak reactions are unlikely to be sensitive to temperature. However, they indicate that a margin of safety of 2.4 will need to be incorporated in the design anchorage strength to resist in-plane tension in the PVB membrane at reduced temperature. The thesis develops an improved design method under blast loading for laminated glass and double glazing incorporating laminated glass, although some of the values used in the method should be considered tentative. The thesis also indicates a level of anchorage strength sensitivity to temperature reductions that needs to be taken into account in practical glazing designs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).</p> <p>Results</p> <p>Using a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.</p> <p>Conclusion</p> <p>These results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.</p

    The response of glass window systems to blast loadings: An overview

    Get PDF
    The failure of glass windows in terrorist bombing attacks and accidental explosion incidents has been cited as one of the major causes to the vast casualties. Many studies have been carried out to investigate the response and vulnerability of glass windows against blast loadings. These include laboratory and field tests that have been carried out to experimentally study glass window performance under explosion scenarios and development of analytical and numerical models to analyze and predict glass window responses. This article reviews literatures on the studies of the response of glass window systems to blast loadings. Over 100 papers and documents that are available in the open literature are reviewed. The background and history of the studies on the topic are also briefed. Understandings about the dynamic material properties of glass and available material models are summarized. Popularly used analysis methods and design standards for monolithic and laminated glass windows are outlined, and their accuracies are discussed. Recent studies including analytical solution, numerical simulation, and experimental investigations on glass window systems are summarized. Mitigation measures for blast-resistant windows are also briefly discussed

    Forest regeneration on European sheep pasture is an economically viable climate change mitigation strategy

    Get PDF
    Livestock production uses 37% of land globally and is responsible for 15% of anthropogenic greenhouse gas emissions. Yet livestock farmers across Europe receive billions of dollars in annual subsidies to support their livelihoods. This study evaluates whether diverting European subsidies into the restoration of trees on abandoned farmland represents a cost-effective negative-emissions strategy for mitigating climate change. Focusing on sheep farming in the United Kingdom, and on natural regeneration and planted native forests, we show that, without subsidies, sheep farming is not profitable when farmers are paid for their labour. Despite the much lower productivity of upland farms, upland and lowland farms are financially comparable per hectare. Conversion to 'carbon forests' is possible via natural regeneration when close to existing trees, which are seed sources. This strategy is financially viable without subsidies, meeting the net present value of poorly performing sheep farming at a competitive 4/tCO2eq.Iftreeplantingisrequiredtoestablishforests,then 4/tCO2eq. If tree planting is required to establish forests, then ~55/tCO2eq is needed to break-even, making it uneconomical under current carbon market prices without financial aid to cover establishment costs. However, this break-even price is lower than the theoretical social value of carbon ($68/tCO2eq), which represents the economic cost of CO2 emissions to society. The viability of land-use conversion without subsidies therefore depends on low farm performance, strong likelihood of natural regeneration, and high carbon-market price, plus overcoming potential trade-offs between the cultural and social values placed on pastoral livestock systems and climate change mitigation. The morality of subsidising farming practices that cause high greenhouse gas emissions in Europe, whilst spending billions annually on protecting forest carbon in less developed nations to slow climate change is questionable

    At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1

    Get PDF
    Background: Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/ Angelman syndromes and cancer. Methodology/Principal Findings: To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance: Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/‘‘Rian’’

    The College News, 1923-01-24, Vol. 09, No. 13

    Get PDF
    Bryn Mawr College student newspaper. Merged with The Haverford News in 1968 to form the Bi-college News (with various titles from 1968 on). Published weekly (except holidays) during the academic year

    Briefing: The response of glazing to blast loading

    Full text link
    Breakage of glazing is the largest source of injury from an explosion in an urban area, whether the explosion is due to military attack, terrorist attack, accidental explosion or a natural disaster such as the meteorite over Cheylabinsk, Russia on 15 February 2013. The reasons for this are the ubiquity of glazing in the modern built environment and its proximity to people, its brittleness and low fracture energy, and the formation of elongated and sharp-edged glass fragments. To minimise the injury hazard it is desirable to be able to assess the response. This briefing note explains the response of glazing and glazing systems to blast waves from an external explosion. By choice of suitable makeup of a glazing system, the hazard level to building occupants from a given level of blast loading can be reduced to acceptable levels. </jats:p

    Sustainable facade design for glazed buildings in a blast resilient urban environment

    No full text
    In facade construction the glazed elements have Always been considered the most critical component. In today's blast events, terrorists have changed their mode of action and targets where the glass performance is weak have become even more of a concern. Therefore counter-terrorism offices (such as in the UK) have been introducing design guidelines for crowded places, making a compromise between safety and sustainability. This paper describes how it is possible to achieve a resilient urban environment, where glass is still the dominant element of the architectural scope making use of glazed facade systems with excellent blast protection performances. Novel façade systems have recently been developed by means of effective simulation techniques. The numerical tools recognize, enhance and balance the already existing façade capacity to resist the blast loads and take into account the fundamental dynamic interactions between all façade elements. In this way, innovative façade compenents (such as curtain walling brackets) have been developed which have the ability to upgrade conventional or lightly enhanced glass facade systems to higher blast protection levels

    Sustainable facade design for glazed buildings in a blast resilient urban environment

    No full text
    In facade construction the glazed elements have always been considered the most critical components for the minimization of hazards during a blast event. In today's blast events, terrorists have changed their mode of action and targets where the glass performance is weak have become even more of a concern. Therefore counter-terrorism offices (such as in the UK) have been introducing design guidelines for crowded places, making a compromise between safety and sustainability. This paper describes how it is possible to achieve a resilient urban environment, where glass is still the dominant element of the architectural scope making use of glazed facade systems with excellent blast protection performances. Novel façade systems have recently been developed by means of effective simulation techniques. The numerical tools recognize, enhance and balance the already existing façade capacity to resist the blast loads and take into account the fundamental dynamic interactions between all façade elements, including the option to adopt innovative façade components (such as curtain walling brackets) to upgrade conventional or lightly enhanced glass facade systems to higher blast protection levels.JRC.E.4-Safety and Security of Building
    corecore