361 research outputs found
Probing the nuclear EOS with fragment production
We discuss fragmentation mechanisms and isospin transport occurring in
central collisions between neutron rich systems at Fermi energies. In
particular, isospin effects are analyzed looking at the correlations between
fragment isotopic content and kinematical properties. Simulations are based on
an approximate solution of the Boltzmann-Langevin (BL) equation. An attempt to
solve the complete BL equation, by introducing full fluctuations in phase space
is also discussed.Comment: 10 pages, 4 figures; Int.Nucl.Phys.Conf., Tokyo June 07, to appear in
Nucl.Phys.A (Elsart
Random Walks Along the Streets and Canals in Compact Cities: Spectral analysis, Dynamical Modularity, Information, and Statistical Mechanics
Different models of random walks on the dual graphs of compact urban
structures are considered. Analysis of access times between streets helps to
detect the city modularity. The statistical mechanics approach to the ensembles
of lazy random walkers is developed. The complexity of city modularity can be
measured by an information-like parameter which plays the role of an individual
fingerprint of {\it Genius loci}.
Global structural properties of a city can be characterized by the
thermodynamical parameters calculated in the random walks problem.Comment: 44 pages, 22 figures, 2 table
Forecasting Player Behavioral Data and Simulating in-Game Events
Understanding player behavior is fundamental in game data science. Video
games evolve as players interact with the game, so being able to foresee player
experience would help to ensure a successful game development. In particular,
game developers need to evaluate beforehand the impact of in-game events.
Simulation optimization of these events is crucial to increase player
engagement and maximize monetization. We present an experimental analysis of
several methods to forecast game-related variables, with two main aims: to
obtain accurate predictions of in-app purchases and playtime in an operational
production environment, and to perform simulations of in-game events in order
to maximize sales and playtime. Our ultimate purpose is to take a step towards
the data-driven development of games. The results suggest that, even though the
performance of traditional approaches such as ARIMA is still better, the
outcomes of state-of-the-art techniques like deep learning are promising. Deep
learning comes up as a well-suited general model that could be used to forecast
a variety of time series with different dynamic behaviors
Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs
Transport through generalized trees is considered. Trees contain the simple
nodes and supernodes, either well-structured regular subgraphs or those with
many triangles. We observe a superdiffusion for the highly connected nodes
while it is Brownian for the rest of the nodes. Transport within a supernode is
affected by the finite size effects vanishing as For the even
dimensions of space, , the finite size effects break down the
perturbation theory at small scales and can be regularized by using the
heat-kernel expansion.Comment: 21 pages, 2 figures include
The UK market for energy service contracts in 2014–2015
This paper provides an overview of the UK market for energy service contracts in 2014 and highlights the growing role of intermediaries. Using information from secondary literature and interviews, it identifies the businesses offering energy service contracts, the sectors and organisations that are purchasing those contracts, the types of contract that are available, the areas of market growth and the reasons for that growth. The paper finds that the UK market is relatively large, highly diverse, concentrated in particular sectors and types of site and overwhelmingly focused upon established technologies with high rates of return. A major driver is the emergence of procurement frameworks for energy service contracts in the public sector. These act as intermediaries between clients and contractors, thereby lowering transaction costs and facilitating learning. The market is struggling to become established in commercial offices, largely as a result of split incentives, and is unlikely to develop further in this sector without different business models, tenancy arrangements and policy initiatives. Overall, the paper concludes that energy service contracts can play an important role in the transition to a low-carbon economy, especially when supported by intermediaries, but their potential is still limited by high transaction costs
Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV
The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions
at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in
this reaction, between 52 and 95 A.MeV bombarding energies, the number of
particles emitted in the intermediate velocity region is related to the overlap
volume between projectile and target. Mean transverse energies of these
particles are found particularly high. In this context, the mass of the QP
decreases linearly with the impact parameter from peripheral to central
collisions whereas its excitation energy increases up to 8 A.MeV. These results
are compared to previous analyses assuming a pure binary scenario
Evidence for Spinodal Decomposition in Nuclear Multifragmentation
Multifragmentation of a ``fused system'' was observed for central collisions
between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products
were well identified thanks to the high performances of the INDRA 4pi array.
Experimental higher-order charge correlations for fragments show a weak but non
ambiguous enhancement of events with nearly equal-sized fragments. Supported by
dynamical calculations in which spinodal decomposition is simulated, this
observed enhancement is interpreted as a ``fossil'' signal of spinodal
instabilities in finite nuclear systems.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter
The approach to thermal equilibrium in quantized chaotic systems
We consider many-body quantum systems that exhibit quantum chaos, in the
sense that the observables of interest act on energy eigenstates like banded
random matrices. We study the time-dependent expectation values of these
observables, assuming that the system is in a definite (but arbitrary) pure
quantum state. We induce a probability distribution for the expectation values
by treating the zero of time as a uniformly distributed random variable. We
show explicitly that if an observable has a nonequilibrium expectation value at
some particular moment, then it is overwhelmingly likely to move towards
equilibrium, both forwards and backwards in time. For deviations from
equilibrium that are not much larger than a typical quantum or thermal
fluctuation, we find that the time dependence of the move towards equilibrium
is given by the Kubo correlation function, in agreement with Onsager's
postulate. These results are independent of the details of the system's quantum
state.Comment: 15 pages, no figures; some arguments are clarified in the revised
versio
Study of intermediate velocity products in the Ar+Ni collisions between 52 and 95 A.MeV
Intermediate velocity products in Ar+Ni collisions from 52 to 95 A.MeV are
studied in an experiment performed at the GANIL facility with the 4
multidetector INDRA. It is shown that these emissions cannot be explained by
statistical decays of the quasi-projectile and the quasi-target in complete
equilibrium. Three methods are used to isolate and characterize intermediate
velocity products. The total mass of these products increases with the violence
of the collision and reaches a large fraction of the system mass in mid-central
collisions. This mass is found independent of the incident energy, but strongly
dependent on the geometry of the collision. Finally it is shown that the
kinematical characteristics of intermediate velocity products are weakly
dependent on the experimental impact parameter, but strongly dependent on the
incident energy. The observed trends are consistent with a
participant-spectator like scenario or with neck emissions and/or break-up.Comment: 37 pages, 13 figure
Multifragmentation of a very heavy nuclear system (I): Selection of single-source events
A sample of `single-source' events, compatible with the multifragmentation of
very heavy fused systems, are isolated among well-measured 155Gd+natU 36AMeV
reactions by examining the evolution of the kinematics of fragments with Z>=5
as a function of the dissipated energy and loss of memory of the entrance
channel. Single-source events are found to be the result of very central
collisions. Such central collisions may also lead to multiple fragment emission
due to the decay of excited projectile- and target-like nuclei and so-called
`neck' emission, and for this reason the isolation of single-source events is
very difficult. Event-selection criteria based on centrality of collisions, or
on the isotropy of the emitted fragments in each event, are found to be
inefficient to separate the two mechanisms, unless they take into account the
redistribution of fragments' kinetic energies into directions perpendicular to
the beam axis. The selected events are good candidates to look for bulk effects
in the multifragmentation process.Comment: 39 pages including 15 figures; submitted to Nucl. Phys.
- …
