239 research outputs found
Nanofluidic Rocking Brownian Motors
Control and transport of nanoscale objects in fluids is challenging because
of the unfavorable scaling of most interaction mechanisms to small length
scales. We design energy landscapes for nanoparticles by accurately shaping the
geometry of a nanofluidic slit and exploiting the electrostatic interaction
between like charged particles and walls. Directed transport is performed by
combining asymmetric potentials with an oscillating electric field to achieve a
rocking Brownian motor. Using 60\,nm diameter gold spheres, we investigate the
physics of the motors with high spatio-temporal resolution, enabling a
parameter-free comparison with theory. We fabricated a sorting device that
separates 60- and 100-nanometer particles in opposing directions within
seconds. Modeling suggests that the device separates particles with a radial
difference of 1 nanometer.Comment: 13 pages, 4 figures, supplemental information: 26 pages, 13 figures,
1 tabl
Randomized controlled trial comparing three different modalities of lithotrites for intracorporeal lithotripsy in pcnl
Purpose: To compare the efficiency (stone fragmentation and removal time) and complications of three models of intracorporeal lithotripters in percutaneous nephrolithotomy (PCNL). Materials and Methods: Prospective, randomized controlled trial at nine centers in the North America from 2009 to 2016. Patients were randomized to one of three lithotripter devices: the Cyberwand, a dual probe ultrasonic device; the Swiss Lithoclast Select, a combination pneumatic and ultrasonic device; and the StoneBreaker, a portable pneumatic device powered by CO2 cartridges. Since the StoneBreaker lacks an ultrasonic component, it was used with the LUS‐II ultrasonic lithotripter to allow fair comparison with combination devices. Results: 270 patients were enrolled, 69 were excluded after randomization. 201 patients completed the study: 71 in the Cyberwand group, 66 in the Lithoclast Select, and 64 in the StoneBreaker group. The baseline patient characteristics of the three groups were similar. Mean stone surface area was smaller in the StoneBreaker group at 407.8mm2 vs 577.5mm2 (Lithoclast Select) and 627.9mm2 (Cyberwand). The stone clearance rate was slowest in the StoneBreaker group at 24.0 mm2/min vs 28.9 mm2/min and 32.3 mm2/min in the Lithoclast Select and Cyberwand groups respectively. After statistically adjusting for the smaller mean stone size in the StoneBreaker group, there was no difference in the stone clearance rate among the three groups (p=0.249). Secondary outcomes, including complications and stone free rates, were similar between the groups. Conclusions: The Cyberwand, Lithoclast Select, and the StoneBreaker lithotripters have similar adjusted stone clearance rates in PCNL for stones > 2cm. The safety and efficacy of these devices are comparable
Sub 20 nm Silicon Patterning and Metal Lift-Off Using Thermal Scanning Probe Lithography
The most direct definition of a patterning process' resolution is the
smallest half-pitch feature it is capable of transferring onto the substrate.
Here we demonstrate that thermal Scanning Probe Lithography (t-SPL) is capable
of fabricating dense line patterns in silicon and metal lift-off features at
sub 20 nm feature size. The dense silicon lines were written at a half pitch of
18.3 nm to a depth of 5 nm into a 9 nm polyphthalaldehyde thermal imaging layer
by t-SPL. For processing we used a three-layer stack comprising an evaporated
SiO2 hardmask which is just 2-3 nm thick. The hardmask is used to amplify the
pattern into a 50 nm thick polymeric transfer layer. The transfer layer
subsequently serves as an etch mask for transfer into silicon to a nominal
depth of 60 nm. The line edge roughness (3 sigma) was evaluated to be less than
3 nm both in the transfer layer and in silicon. We also demonstrate that a
similar three-layer stack can be used for metal lift-off of high resolution
patterns. A device application is demonstrated by fabricating 50 nm half pitch
dense nickel contacts to an InAs nanowire.Comment: 7 pages, 5 figures, to be published in JVST
Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors
A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20–100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications
Promiscuous Expression of α-Tubulin II in Maturing Male and Female Plasmodium falciparum Gametocytes
BACKGROUND: Antimalarial interventions designed to impact on the transmissible sexual stages of Plasmodium falciparum are evaluated by measurement of peripheral gametocyte carriage in vivo and infectivity to mosquitoes. Drug or vaccine-elicited effects may differentially affect the relative abundance of mature male and female sexual forms, and this can be measured by estimation of sex ratios before and after intervention in vivo and in vitro. Measuring the impact of anti-gametocyte drugs on sexual commitment of immature gametocyte stages in vitro is not currently possible as male and female parasites cannot be distinguished by morphology alone prior to stage IV. METHODOLOGY/PRINCIPAL FINDINGS: We have modified an existing immunofluorescence-based approach for distinguishing male and female gametocytes during development in vitro, by using highly synchronised magnetically-enriched gametocyte preparations at different stages of maturity. Antibodies recognising α-tubulin II (males) and Pfg377 (females) were used to attempt to discriminate the sexes. Transcription of these two proteins was not coordinated during in vitro development, with pfg377 transcripts accumulating only late in development, immediately prior to immunofluorescent signals from the PfG377 protein appearing in stage IV gametocytes. Contrary to previous descriptions of this protein as male-specific in P. falciparum, α-tubulin II recognised both male and female gametocytes at stages I to IV, but evidence of differential expression levels of this protein in late stage male and female gametocytes was found. Using antibodies recognising PfG377 as the primary marker and α-tubulin II as a secondary marker, robust estimates of sex ratio in in vitro cultures were obtained for gametocytes at stage IV or later, and validated by light microscopic counts. However, sex ratio estimation was not possible for early stage gametocytes due to the promiscuity of α-tubulin II protein expression, and the relatively late accumulation of PfG377 during the development process. CONCLUSIONS/SIGNIFICANCE: This approach is a feasible method for the evaluation of drug impacts on late-stage gametocyte sex ratio in in vitro studies. Additional sex-specific antigens need to be evaluated for sex ratio estimation in early stage gametocyte preparations
SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87
Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images
THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope
The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87
- …
