67 research outputs found

    Targeting Mitochondrial Function in Diabetic Nephropathy

    Get PDF
    TARGETING MITOCHONDRIAL FUNCTION IN DIABETIC NEPHROPATHY The incidence of diabetes has increased to epidemic proportions over the last 50 years, due to a complex interaction of lifestyle and dietary factors. Changes in physical activity, caloric intake, and the composition of foods consumed over the last century are thought to interact with metabolic syndrome prone subpopulations leading ultimately to diabetes. It is widely accepted that chronic hyperglycemia in the blood characterizes the diabetic condition. Since the discovery of insulin therapy in the first half of the 20th century, diabetics have extended their lifespan considerably, but at the cost of increased morbitity from complications such as nephropathy, neuropathy, and retinopathy. Large scale studies assessing the long term effects of variations in blood glucose levels in diabetic patients have associated increased blood sugar levels with higher rates of secondary complications. The current paradigm for diabetic treatment centers on controlling blood glucose levels, and as such, a number of drugs have been developed targeting insulin levels and action. While current therapies are beneficial in reducing long term complications, significant limitations exist. This includes the need for intensive therapy early in disease progression, decreased efficacy over time, and reliance on patients to properly medicate in response to daily glucose fluctuations. A significant amount of research has been undertaken to address the mechanisms by which high glucose levels in diabetics cause organ damage, particularly the kidney which is the focus of investigation in this thesis. An early event in the pathology of diabetes is mitochondrial dysfunction with hyperglycemia induced cell damage. Mitochondria serve a number of functions in the cell, including metabolizing glucose for the generation of energy and producing reactive oxygen species for intracellular signaling. These functions have been found to be critical in mediating hyperglycemic-dependent damage, but also provide a novel target for diabetic therapy. In this thesis, we show that a new class of mitochondrial targeted antioxidants can prevent diabetes induced renal dysfunction. The mechanism of action for these targeted antioxidants in a diabetic context involves controlling the cell signaling pathways leading to fibrosis

    Identification of the Gd-IgA1 Autoantigen by New Monoclonal Finds Differential NF-kB Signaling

    Get PDF
    2025 Summer Expo Poster Presentation Biological & Life Scienceshttps://digitalcommons.library.uab.edu/sp-expo/1142/thumbnail.jp

    Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study

    Get PDF
    IgA nephropathy is diagnosed by renal biopsy, an invasive procedure with a risk of significant complications. Noninvasive approaches are needed for possible diagnostic purposes and especially for monitoring disease activity or responses to treatment. In this pilot project, we assessed the utility of urine samples as source of biomarkers of IgA nephropathy. We used spot urine specimens from 19 healthy controls, 11 patients with IgA nephropathy, and 8 renal-disease controls collected on day of renal biopsy. Urine samples were analyzed using untargeted metabolomic and targeted proteomic analyses by several experimental techniques: liquid chromatography coupled with mass spectrometry, immunomagnetic isolation of target proteins coupled with quantitation by mass spectrometry, and protein arrays. No single individual biomarker completely differentiated the three groups. Therefore, we tested the utility of several markers combined in a panel. Discriminant analysis revealed that combination of seven markers, three metabolites (dodecanal, 8-hydroxyguanosine, and leukotriene C4), three proteins (α1-antitrypsin, IgA-uromodulin complex, and galactose-deficient IgA1), and heparan sulfate, differentiated patients with IgA nephropathy from patients with other renal diseases and healthy controls. Future studies are needed to validate these preliminary findings and to determine the power of these urinary markers for assessment of responses to therapy.</jats:p

    Prevention of diabetic nephropathy in Ins2+/−AkitaJ mice by the mitochondria-targeted therapy MitoQ

    Get PDF
    Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2+/−AkitaJ mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2+/−AkitaJ mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and β-catenin showed a nuclear accumulation in the Ins2+/−AkitaJ mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Assigning immunoglobulin class from single-cell transcriptomes in IgA1-secreting versus membrane subpopulations

    Full text link
    IgA nephropathy (IgAN) is an autoimmune disease characterized by renal glomerular immunodeposits enriched for galactose-deficient IgA1 (Gd-IgA1; autoantigen) with the corresponding IgG autoantibodies. Despite the known contribution of Gd-IgA1 to IgAN, little is known concerning IgA1-secreting subpopulations responsible for autoantigen production. The goal of this study is to identify IgA1-secreting and membrane subpopulations from single-cell transcriptomic analysis. We developed a novel single-cell analytics workflow to discern cells expressing IgA1 secreted isoform or membrane-bound isoform. Multiple approaches were compared to assess immunoglobulin-isotype identity in single cells, and multiple immunoglobulin heavy-chain genes expressed in the same cells were found. To better identify specific immunoglobulin heavy-chain transcripts, we merged a software platform called Alteryx with the existing single-cell R toolkit program Seurat. This process allowed for improved calls on IgA1-secreting subpopulations based on secreting versus membrane splice-variant expression levels. </jats:p

    Assigning immunoglobulin class from single-cell transcriptomes in IgA1-secreting versus membrane subpopulations

    No full text
    IgA nephropathy (IgAN) is an autoimmune disease characterized by renal glomerular immunodeposits enriched for galactose-deficient IgA1 (Gd-IgA1; autoantigen) with the corresponding IgG autoantibodies. Despite the known contribution of Gd-IgA1 to IgAN, little is known concerning IgA1-secreting subpopulations responsible for autoantigen production. The goal of this study is to identify IgA1-secreting and membrane subpopulations from single-cell transcriptomic analysis. We developed a novel single-cell analytics workflow to discern cells expressing IgA1 secreted isoform or membrane-bound isoform. Multiple approaches were compared to assess immunoglobulin-isotype identity in single cells, and multiple immunoglobulin heavy-chain genes expressed in the same cells were found. To better identify specific immunoglobulin heavy-chain transcripts, we merged a software platform called Alteryx with the existing single-cell R toolkit program Seurat. This process allowed for improved calls on IgA1-secreting subpopulations based on secreting versus membrane splice-variant expression levels

    Assay for galactose-deficient IgA1 enables mechanistic studies with primary cells from IgA nephropathy patients

    No full text
    Aims: IgA nephropathy, the most common primary glomerulonephritis worldwide, is characterized by glomerular deposition of galactose-deficient IgA1 and elevated serum levels of this IgA1 glycoform. Current ELISA methods lack sensitivity to assess galactose deficiency using small amounts of IgA1, which limits studies in primary cells due to modest IgA1 production in isolated peripheral-blood lymphocytes. Methods: Lectin from Helix pomatia was conjugated to biotin or acridinium ester and used in ELISA to detect galactose deficiency of IgA1 using small amounts of IgA1. Results: Lectin conjugated to acridinium had an approximately a log-fold increased sensitivity compared with biotin-labeled lectin. Conclusions: The new method of using lectin from Helix pomatia conjugated to acridinium increased assay sensitivity, allowing future mechanistic studies with cultured primary cells
    corecore