524 research outputs found
Complex dynamics of evaporation-driven convection in liquid layers
The spontaneous convective patterns induced by evaporation of a pure liquid
layer are studied experimentally. A volatile liquid layer placed in a
cylindrical container is left free to evaporate into air at rest under ambient
conditions. The liquid/gas interface of the evaporating liquid layer is
visualized using an infrared (IR) camera. The phenomenology of the observed
convective patterns is qualitatively analysed, showing in particular that the
latter can be quite complex especially at moderate liquid thicknesses.
Attention is also paid to the influence of the container diameter on the
observed patterns sequence.Comment: videos include
Asymptotic analysis of evaporating droplets
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We consider the evaporation dynamics of a two-dimensional, partially-wetting sessile droplet of a
volatile liquid in its pure vapour, which is supported on a smooth horizontal superheated substrate. Assuming
that the liquid properties remain unchanged, we utilise a one-sided lubrication-type model for the evolution of
the droplet thickness, which accounts for the effects of evaporation, capillarity, slip and the kinetic resistance
to evaporation. We follow an asymptotic approach, which yields a set of coupled evolution equations for
the droplet radius and area, estimating analytically the evaporation-modified apparent angle when evaporation
effects are weak. The validity of our matching procedure is verified by numerical experiments, obtaining also
an estimate for the evaporation time
Pattern formation without heating in an evaporative convection experiment
We present an evaporation experiment in a single fluid layer. When latent
heat associated to the evaporation is large enough, the heat flow through the
free surface of the layer generates temperature gradients that can destabilize
the conductive motionless state giving rise to convective cellular structures
without any external heating. The sequence of convective patterns obtained here
without heating, is similar to that obtained in B\'enard-Marangoni convection.
This work present the sequence of spatial bifurcations as a function of the
layer depth. The transition between square to hexagonal pattern, known from
non-evaporative experiments, is obtained here with a similar change in
wavelength.Comment: Submitted to Europhysics Letter
Compact and explicit physical model for lateral metal-oxide-semiconductor field-effect transistor with nanoelectromechanical system based resonant gate
We propose a simple analytical model of a metal-oxide-semiconductor
field-effect transistor with a lateral resonant gate based on the coupled
electromechanical equations, which are self-consistently solved in time. All
charge densities according to the mechanical oscillations are evaluated. The
only input parameters are the physical characteristics of the device. No extra
mathematical parameters are used to fit the experimental results. Theoretical
results are in good agreement with the experimental data in static and dynamic
operation. Our model is comprehensive and may be suitable for any
electromechanical device based on the field-effect transduction
Penta-hepta defect chaos in a model for rotating hexagonal convection
In a model for rotating non-Boussinesq convection with mean flow we identify
a regime of spatio-temporal chaos that is based on a hexagonal planform and is
sustained by the {\it induced nucleation} of dislocations by penta-hepta
defects. The probability distribution function for the number of defects
deviates substantially from the usually observed Poisson-type distribution. It
implies strong correlations between the defects inthe form of density-dependent
creation and annihilation rates of defects. We extract these rates from the
distribution function and also directly from the defect dynamics.Comment: 4 pages, 5 figures, submitted to PR
Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications
We have developed arrays of nanomechanical systems (NEMS) by large-scale integration, comprising thousands of individual nanoresonators with densities of up to 6 million NEMS per square centimeter. The individual NEMS devices are electrically coupled using a combined series-parallel configuration that is extremely robust with respect to lithographical defects and mechanical or electrostatic-discharge damage. Given the large number of connected nanoresonators, the arrays are able to handle extremely high input powers (>1 W per array, corresponding to <1 mW per nanoresonator) without excessive heating or deterioration of resonance response. We demonstrate the utility of integrated NEMS arrays as high-performance chemical vapor sensors, detecting a part-per-billion concentration of a chemical warfare simulant within only a 2 s exposure period
Onset of thermal ripples at the interface of an evaporating liquid under a flow of inert gas
peer reviewe
Amplitude equations for Rayleigh-Benard convective rolls far from threshold
An extension of the amplitude method is proposed. An iterative algorithm is developed to build an amplitude equation model that is shown to provide precise quantitative results even far from the linear instability threshold. The method is applied to the study of stationary Rayleigh-Benard thermoconvective rolls in the nonlinear regime. In particular, the generation of second and third spatial harmonics is analyzed. Comparison with experimental results and direct numerical calculations is also made and a very good agreement is found.Peer reviewe
Detection Of Apple Stem Grooving Virus In Dormant Apple Trees With Crude Extracts As Templates For One-Step Rt-Pcr
peer reviewe
- …
