2,399 research outputs found

    The spectral characteristics of the 2dFGRS-NVSS galaxies

    Get PDF
    We have analysed the 2dF spectra of a sample of galaxies common to the 2dF galaxy redshift survey (2dFGRS, Colless 1999) and the NRAO VLA sky survey (NVSS, Condon et al. 1998). Our sample comprises 88 galaxies selected by Sadler et al. (1999) from 30 2dFGRS fields observed in 1998. In this paper we discuss how this and future, much larger, samples of 2dFGRS-NVSS galaxies can be interpreted via analysis of those galaxies with strong narrow emission lines. Using diagnostic line ratio measurements we confirm the majority of the eyeball classifications of Sadler et al. (1999), although many galaxies show evidence of being `composite' galaxies - a mixture of AGN plus starburst components.Comment: 11 pages, 5 figures, accepted for publication in PAS

    Internal Kinematics of Distant Field Galaxies: I. Emission Line Widths for a Complete Sample of Faint Blue Galaxies at <z>=0.25

    Full text link
    We present measurements of the OII(3727) emission line width for a complete sample of 24 blue field galaxies (21.25=0.25, obtained with the AUTOFIB fibre spectrograph on the Anglo-Australian Telescope. Most emission lines are spectrally resolved, yet all have dispersions sigma<100km/s. Five of the 24 sample members have OII doublet line flux ratios which imply gas densities in excess of 100 cm^-3. The line emission in these galaxies may be dominated by an active nucleus and the galaxies have been eliminated from the subsequent analysis. The remaining 19 linewidths are too large by a factor of two (7sigma significance) to be attributed to turbulent motions within an individual star forming region, and therefore most likely reflect the orbital motion of ionized gas in the galaxy. We use Fabry--Perot observations of nearby galaxies to construct simulated datasets that mimic our observational setup at z=0.25; these allow us to compute the expected distribution of (observable) linewidths sigma_v for a galaxy of a given ``true'' (optical) rotation speed v_c. These simulations include the effects of random viewing angles, clumpy line emission, finite fibre aperture, and internal dust extinction on the emission line profile. We assume a linewidth--luminosity--colour relation: ln[ v_c(M_B,B-R) ] = ln[v_c(-19,1)] - eta*(M_B+10) + zeta*[(B-R)-1] and determine the range of parameters consistent with our data. We find a mean rotation speed of v_c(-19,1)=66+-8km/s (68% confidence limits) for the distant galaxies with M_B=-19 and B-R=1, with a magnitude dependence for v_c of eta=0.07+-0.08, and a colour dependence of zeta =0.28+-0.25. Through comparison with several local samples we show that this value of v_c(-19,1) is significantly lower than the optical rotation speed of present-day galaxies with the same absolute magnitudeComment: TeX Text and Tables, no Figures. Compressed and uuencoded PS file of the complete paper (43 pages including 9 figures) available at http://zwicky.as.arizona.edu/~rix/; submitted to MNRA

    Redshift surveys and cosmology: A summary of the Dunk Island Conference

    No full text
    Redshift surveys constitute one of the prime tools of observational cosmology. Imaging surveys of the whole sky are now available at a wide range of wavelengths, and provide a basis for the new generation of massive redshift surveys currently in progress. The very large datasets produced by these surveys call for new and sophisticated approaches to the analysis of large-scale structure and the galaxy population. These issues, and some preliminary results from the new redshift surveys, were discussed at the second Coral Sea Cosmology Conference, held at Dunk Island on 24-28 August 1999. This is a summary of the conference; the full conference proceedings are on the WWW at http://www.mso.anu.edu.au/DunkIsland/Proceedings

    Maximum likelihood method for fitting the Fundamental Plane of the 6dF Galaxy Survey

    Full text link
    We have used over 10,000 early-type galaxies from the 6dF Galaxy Survey (6dFGS) to construct the Fundamental Plane across the optical and near-infrared passbands. We demonstrate that a maximum likelihood fit to a multivariate Gaussian model for the distribution of galaxies in size, surface brightness and velocity dispersion can properly account for selection effects, censoring and observational errors, leading to precise and unbiased parameters for the Fundamental Plane and its intrinsic scatter. This method allows an accurate and robust determination of the dependencies of the Fundamental Plane on variations in the stellar populations and environment of early-type galaxies.Comment: 3 pages, 1 figure, to appear in the proceedings of the IAU Symposium 262 "Stellar Populations: Planning for the Next Decade", Charlot and Bruzual ed

    The Stellar Populations of Low-redshift Clusters

    Full text link
    We present some preliminary results from an on-going study of the evolution of stellar populations in rich clusters of galaxies. This sample contains core line-strength measurements from 183 galaxies with b_J <= 19.5 from four clusters with ~0.04. Using predictions from stellar population models to compare with our measured line strengths we can derive relative luminosity-weighted mean ages and metallicities for the stellar populations in each of our clusters. We also investigate the Mgb'-sigma and Hbeta_G'-sigma scaling relations. We find that, consistent with previous results, Mgb' is correlated with sigma, the likely explanation being that larger galaxies are better at retaining their heavier elements due to their larger potentials. Hbeta', on the other hand, we find to be anti-correlated with sigma. This result implies that the stellar populations in larger galaxies are older than in smaller galaxies.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 12-16 200

    Measuring H0 from the 6dF Galaxy Survey and future low-redshift surveys

    Full text link
    Baryon acoustic oscillations (BAO) at low redshift provide a precise and largely model-independent way to measure the Hubble constant, H0. The 6dF Galaxy Survey measurement of the BAO scale gives a value of H0 = 67 +/- 3.2 km/s/Mpc, achieving a 1-sigma precision of 5%. With improved analysis techniques, the planned WALLABY (HI) and TAIPAN (optical) redshift surveys are predicted to measure H0 to 1-3% precision.Comment: Proceedings of IAU Symposium 289, "Advancing the Physics of Cosmic Distances", Richard de Grijs & Giuseppe Bono (eds), 2012, 4p

    The 2dF Galaxy Redshift Survey as a Cosmological Laboratory

    Full text link
    The 2dF Galaxy Redshift Survey (2dFGRS) of 230,000 redshifts of nearby (z~0.1) galaxies is now complete. It has allowed the 2dFGRS team and others to estimate fundamental cosmological parameters and to study galaxy intrinsic properties. Here we highlight three recent key results from the survey: (i) an upper limit of about 2eV on the total mass of the three neutrino flavours, and an intriguing reasonable fitting of the 2dFGRS power spectrum to a Mixed Dark Matter model without a Cosmological Constant, but with a low Hubble constant; (ii) the bimodality of the galaxy population in both spectral parameterisation and in colour; and (iii) the clustering of different galaxy types and evidence for relative stochastic biasing.Comment: Based on invited talks at RESCEU6 (Tokyo) and 'Tully60' (Sydney); to appear in Pub. Ast. Soc. of Australia, ed. J. Bland-Hawthorn; 4 pages, 4 figure
    corecore