3,264 research outputs found
NooLib - A web application for Research
NooLib is a web application which enables to host and promote your own algorithms for Research. With NooLib, you can easily deposit your programs written in C/C++/Js/Java/Php or Python and transform them into an useful application. Interact smartly with others applications and share your results with people
Colorful Strips
Given a planar point set and an integer , we wish to color the points with
colors so that any axis-aligned strip containing enough points contains all
colors. The goal is to bound the necessary size of such a strip, as a function
of . We show that if the strip size is at least , such a coloring
can always be found. We prove that the size of the strip is also bounded in any
fixed number of dimensions. In contrast to the planar case, we show that
deciding whether a 3D point set can be 2-colored so that any strip containing
at least three points contains both colors is NP-complete.
We also consider the problem of coloring a given set of axis-aligned strips,
so that any sufficiently covered point in the plane is covered by colors.
We show that in dimensions the required coverage is at most .
Lower bounds are given for the two problems. This complements recent
impossibility results on decomposition of strip coverings with arbitrary
orientations. Finally, we study a variant where strips are replaced by wedges
Time and Spatial Invariance of Impedance Signals in Limbs of Healthy Subjects by Time–Frequency Analysis
The bioelectric impedance technique is a non-invasive method that provides the analysis of blood volume changes in the arteries. This is made possible by an interpretation of the impedance signal variations. In this paper, time and spatial variations of such impedance signals are studied on recordings made on limbs of 15 healthy subjects at rest. For that purpose, the scalogram of each signal has been computed and quantitative measures based on energies were determined. The results show that the signals are statistically time invariant on three anatomical segments of the limbs: pelvis, thigh and calf. p Value varies between 0.20 and 0.52 for the absolute energies computed on scalograms of signals recorded at 5 min intervals. Moreover, the analysis made on the two legs of each subject shows that the signals are spatial invariant on the three anatomical segments. p Value varies between 0.0785 and 1.000 for the absolute energies computed on the scalograms of signals recorded simultaneously on the two legs. These conclusions will therefore help the clinicians in studying the temporal variations of physiological parameters on limbs with the impedance technique. Moreover, the results on the spatial invariance make possible the comparisons of these parameters with those given by other acquisition techniques
Asymmetric trehalose analogues to probe disaccharide processing pathways in mycobacteria
The uptake and metabolism of the disaccharide trehalose by Mycobacterium tuberculosis is essential for the virulence of this pathogen. Here we describe the chemoenzymatic synthesis of new azido-functionalised asymmetric trehalose probes that resist degradation by mycobacterial enzymes and are used to probe trehalose processing pathways in mycobacteria
Alzheimer' Disease as a Disconnection Syndrome?
This paper reviews the growing amount of evidence supporting the hypothesis that Alzheimer's disease includes a disconnection syndrome. This evidence came mainly from neuropathological, electrophysiological, and neuroimaging studies. Moreover, a few recent neuropsychological studies have also explored the effects of a disconnection between cerebral areas on cognitive functioning. Finally, and more generally, the contribution of this interpretation to the understanding of Alzheimer's disease cognitive deficits is considere
Neural computations underlying inverse reinforcement learning in the human brain
In inverse reinforcement learning an observer infers the reward distribution available for actions in the environment solely through observing the actions implemented by another agent. To address whether this computational process is implemented in the human brain, participants underwent fMRI while learning about slot machines yielding hidden preferred and non-preferred food outcomes with varying probabilities, through observing the repeated slot choices of agents with similar and dissimilar food preferences. Using formal model comparison, we found that participants implemented inverse RL as opposed to a simple imitation strategy, in which the actions of the other agent are copied instead of inferring the underlying reward structure of the decision problem. Our computational fMRI analysis revealed that anterior dorsomedial prefrontal cortex encoded inferences about action-values within the value space of the agent as opposed to that of the observer, demonstrating that inverse RL is an abstract cognitive process divorceable from the values and concerns of the observer him/herself
Modeling and interpretation of the bioelectrical impedance signal for the determination of the local arterial stiffness
Purpose: Stiffness of the large arteries (e.g., aorta) plays an important role in the pathogenesis of cardiovascular diseases. To date, the reference method for the determination of regional arterial stiffness is the measurement of the carotid-femoral pulse wave velocity (PWV) by tonometric techniques. However, this method suffers from several drawbacks and it remains limited in clinical routine.Methods: In the present study, the authors propose a new method based on the analysis of bioelectrical impedance (BI) signals for the determination of the local arterial stiffness. They show, from a theoretical model, a novel interpretation of the BI signals and they establish the relationship between the variations in the BI signal and the kinetic energy of the blood flow in large arteries. From this model, BI signals are simulated in the thigh and compared to experimental BI data. Finally, from the model, they propose a new index ( Ira ) related to the properties of the large artery for the determination of the local arterial stiffness. Results: The results show a good correlation between the simulated and the experimental BI signals. The same variations for both of them with different characteristics for rigid and elasticarteries can be observed. The measurement of the Ira index on 20 subjects at rest (mean age of 44 ± 16 yr ) for the determination of the local aortic stiffness presents a significant correlation with the PWV reference method ( R 2 = 0.77 ; P < 0.0001 with the Spearman correlation coefficient and Ira = 4.25 * PWV + 23.54 ). Conclusions: All the results suggest that the theoretical model and the new index could give a reliable estimate of local arterial stiffness
Measurement of the local aortic stiffness by a non-invasive bioelectrical impedance technique
Aortic stiffness measurement is well recognized as an independent predictor of cardiovascular mortality and morbidity. Recently, a simple method has been proposed for the evaluation of the local aortic stiffness (AoStiff) using a non-invasive bioelectrical impedance (BI) technique. This approach relies on a novel interpretation of the arterial stiffness where AoStiff is computed from the measurement of two new BI variables: (1) the local aortic flow resistance (AoRes) exerted by the drag forces onto the flow; (2) the local aortic wall distensibility (AoDist). Herein, we propose to detail and compare these three indices with the reference pulse wave velocity (PWV) measurement and the direct assessment of the aortic drag forces (DF) and distensibility (DS) obtained by the magnetic resonance imaging technique. Our results show a significant correlation between AoStiff and PWV (r = 0.79; P < 0.0001; 120 patients at rest; mean age 44 ± 16 years), and also between AoRes and DF (r = 0.95; P = 0.0011) and between AoDist and DS (r = 0.93; P = 0.0022) on eight patients at rest (mean age 52 ± 19 years). These first results suggest that local aortic stiffness can be explored reliably by the BI technique
Nouvelle méthode de mesure de la rigidité artérielle aortique par technique bio-impédancemétrique
- …
