9,514 research outputs found
Bill In Hell
A humorous look at the truth of relationships between varying roles of people and the supremacy love holds
Center of mass rotation and vortices in an attractive Bose gas
The rotational properties of an attractively interacting Bose gas are studied
using analytical and numerical methods. We study perturbatively the ground
state phase space for weak interactions, and find that in an anharmonic trap
the rotational ground states are vortex or center of mass rotational states;
the crossover line separating these two phases is calculated. We further show
that the Gross-Pitaevskii equation is a valid description of such a gas in the
rotating frame and calculate numerically the phase space structure using this
equation. It is found that the transition between vortex and center of mass
rotation is gradual; furthermore the perturbative approach is valid only in an
exceedingly small portion of phase space. We also present an intuitive picture
of the physics involved in terms of correlated successive measurements for the
center of mass state.Comment: version2, 17 pages, 5 figures (3 eps and 2 jpg
A VLBA Search for a Stimulated Recombination Line from the Accretion Region in NGC1275
The radio source 3C84, in NGC1275, has a two sided structure on parsec
scales. The northern feature, presumed to be associated with a jet moving away
from the Earth, shows strong evidence for free-free absorption. The ionized gas
responsible for that absorption would be a source of detectable stimulated
recombination line emission for a wide range of physical conditions. The VLBA
has been used to search for the H65 hydrogen recombination line. The
line is only expected to be seen against the northern feature which contains a
small fraction of the total radio flux density. This spatial discrimination
significantly aids the search for a weak line. No line was seen, with upper
limits of roughly 15% of the continuum over a velocity range of 1486 km/s with
resolutions up to 6.6 km/s. In the absence of a strong radiation field, this
would imply that the free-free absorbing gas has a wide velocity width, is
moving rapidly relative to the systemic velocity, or is concentrated in a thin,
high density structure. All of these possibilities are reasonably likely close
to an AGN. However, in the intense radiation environment of the AGN, even
considering only the radiation we actually observe passing through the
free-free absorbing gas, the non-detection is probably assured by a combination
of saturation and radiation damping.Comment: 14 pages with 4 postscript figures. Accepted for publication in the
April 2003 Astronomical Journa
Containerless high temperature property measurements
Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique
The puzzle of the soft X-ray excess in AGN: absorption or reflection?
The 2-10 keV continuum of AGN is generally well represented by a single power
law. However, at smaller energies the continuum displays an excess with respect
to the extrapolation of this power law, called the ''soft X-ray excess''. Until
now this soft X-ray excess was attributed, either to reflection of the hard
X-ray source by the accretion disk, or to the presence of an additional
comptonizing medium, giving a steep spectrum. An alternative solution proposed
by Gierlinski and Done (2004) is that a single power law well represents both
the soft and the hard X-ray emission and the impression of the soft X-ray
excess is due to absorption of a primary power law by a relativistic wind. We
examine the advantages and drawbacks of reflection versus absorption models,
and we conclude that the observed spectra can be well modeled, either by
absorption (for a strong excess), or by reflection (for a weak excess). However
the physical conditions required by the absorption models do not seem very
realistic: we would prefer an ''hybrid model''.Comment: 4 pages, 3 figures, abstracts SF2A-2005, published by EDP-Sciences
Conference Serie
Electromagnetic surface states in structured perfect-conductor surfaces
Surface-bound modes in metamaterials forged by drilling periodic hole arrays
in perfect-conductor surfaces are investigated by means of both analytical
techniques and rigorous numerical solution of Maxwell's equations. It is shown
that these metamaterials cannot be described in general by local,
frequency-dependent permittivities and permeabilities for small periods
compared to the wavelength, except in certain limiting cases that are discussed
in detail. New related metamaterials are shown to exhibit exciting optical
properties that are elucidated in the light of our simple analytical approach.Comment: 5 figure
Effect of annealing on the superconducting properties of a-Nb(x)Si(1-x) thin films
a-Nb(x)Si(1-x) thin films with thicknesses down to 25 {\AA} have been
structurally characterized by TEM (Transmission Electron Microscopy)
measurements. As-deposited or annealed films are shown to be continuous and
homogeneous in composition and thickness, up to an annealing temperature of
500{\deg}C. We have carried out low temperature transport measurements on these
films close to the superconductor-to-insulator transition (SIT), and shown a
qualitative difference between the effect of annealing or composition, and a
reduction of the film thickness on the superconducting properties of a-NbSi.
These results question the pertinence of the sheet resistance R_square as the
relevant parameter to describe the SIT.Comment: 9 pages, 12 figure
- …
