5,202 research outputs found

    59Co NMR study of the Co states in superconducting and anhydrous cobaltates

    Full text link
    59^{59}Co NMR spectra in oriented powders of Na0.35_{0.35}CoO2_{2} and in its hydrated superconducting phase (HSC) Na0.35_{0.35}CoO2_{2},1.3H2_{2}O reveal a single electronic Co state with identical TT independent NMR shift tensor. These phases differ markedly from Na0.7_{0.7}CoO2_{2}, in which we resolve 3 types of Co sites. The large T variation of their spin susceptibilities χs\chi ^{s} and the anisotropy of the orbital susceptibility χorb\chi ^{orb} allow us to conclude that charge disproportionation occurs, in a non magnetic Co3+^{3+} and two magnetic sites with about 0.3 and 0.7 holes in the t2gt_{2g} multiplet. The data are consistent with those for the single Co site in the anhydrous and HSC phase assuming the expected Co3.65+^{3.65+} charge.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Sr 2 IrO 4 magnetic phase diagram, from resistivity

    Get PDF
    International audienceWe show that the transition to the antiferromagnetic state in zero magnetic field does show up in the transverse resistivity, for which we point out the possibility for a direct spin orientation effect. In an applied field, we propose that the transition is split into two lines, corresponding to in-plane and out-of-plane magnetic ordering. This picture is corroborated by transverse magnetization measurements. The magnetic phase diagram for Sr2IrO4 was investigated, using the angular dependence of the resistivity transverse to the IrO2 planes

    Chirality in magnetic multilayers probed by the symmetry and the amplitude of dichroism in X-ray resonant magnetic scattering

    Full text link
    Chirality in condensed matter is now a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physicals mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters are therefore essential. Here we report X-ray resonant magnetic scattering (XRMS) as a straightforward tool to identify directly the properties of chiral magnetic systems. We show that it can straight-forwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e. its chiral nature, the quantitative winding sense (clockwise or counter-clockwise) and its type (N\'eel/cycloidal or Bloch/helical). This method is model-independent, does not require a-priori knowledge of magnetic parameters and can be applied to any system with magnetic domains ranging from few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities based on the Co|Pt interface we illustrate the strength of this method.Comment: 8 pages, 3 figure

    Measuring microwave quantum states: tomogram and moments

    Full text link
    Two measurable characteristics of microwave one-mode photon states are discussed: a rotated quadrature distribution (tomogram) and normally/antinormally ordered moments of photon creation and annihilation operators. Extraction of these characteristics from amplified microwave signal is presented. Relations between the tomogram and the moments are found and can be used as a cross check of experiments. Formalism of the ordered moments is developed. The state purity and generalized uncertainty relations are considered in terms of moments. Unitary and non-unitary time evolution of moments is obtained in the form of linear differential equations in contrast to partial differential equations for quasidistributions. Time evolution is specified for the cases of a harmonic oscillator and a damped harmonic oscillator, which describe noiseless and decoherence processes, respectively.Comment: 10 pages, 1 figure, to appear in Phys. Rev.

    Long-term variability of the optical spectra of NGC 4151: I. Light curves and flux correlations

    Full text link
    Results of a long-term spectral monitoring of the active galactic nucleus of NGC 4151 are presented (11 years, from 1996 to 2006). High quality spectra (S/N>50 in the continuum near Halpha and Hbeta) were obtained in the spectral range ~4000 to 7500 \AA, with a resolution between 5 and 15 A, using the 6-m and the 1-m SAO's telescopes (Russia), the GHAO's 2.1-m telescope (Cananea, Mexico), and the OAN-SPM's 2.1-m telescope (San-Pedro, Mexico). The observed fluxes of the Halpha, Hbeta, Hgamma and HeII emission lines and of the continuum at the observed wavelength 5117 A, were corrected for the position angle, the seeing and the aperture effects. We found that the continuum and line fluxes varied strongly (up to a factor 6) during the monitoring period. The emission was maximum in 1996-1998, and there were two minima, in 2001 and in 2005. The Halpha, Hgamma and He II fluxes were well correlated with the Hbeta flux. We considered three characteristic periods during which the Hbeta and Halpha profiles were similar: 1996-1999, 2000-2001 and 2002-2006. The line to continuum flux ratios were different; in particular during the first period, the lines were not correlated with the continuum and saturated at high fluxes. In the second and third period, where the continuum flux was small, the Halpha and Hbeta fluxes were well correlated to the continuum flux, meaning that the ionizing continuum was a good extrapolation of the optical continuum. The CCFs are often asymmetrical and the time lags between the lines and the continuum are badly defined indicating the presence of a complex BLR, with dimensions from 1 to 50 light-days.Comment: A&A, accepte

    A Brief History of AGN

    Get PDF
    Astronomers knew early in the twentieth century that some galaxies have emission-line nuclei. However, even the systematic study by Seyfert (1943) was not enough to launch active galactic nuclei (AGN) as a major topic of astronomy. The advances in radio astronomy in the 1950s revealed a new universe of energetic phenomena, and inevitably led to the discovery of quasars. These discoveries demanded the attention of observers and theorists, and AGN have been a subject of intense effort ever since. Only a year after the recognition of the redshifts of 3C 273 and 3C 48 in 1963, the idea of energy production by accretion onto a black hole was advanced. However, acceptance of this idea came slowly, encouraged by the discovery of black hole X-ray sources in our Galaxy and, more recently, supermassive black holes in the center of the Milky Way and other galaxies. Many questions remain as to the formation and fueling of the hole, the geometry of the central regions, the detailed emission mechanisms, the production of jets, and other aspects. The study of AGN will remain a vigorous part of astronomy for the foreseeable future.Comment: 37 pages, no figures. Uses aaspp4.sty. To be published in Publications of the Astronomical Society of the Pacific, 1999 Jun

    Antiferromagnetism in hydrated 123 compounds

    Full text link
    Copper nuclear quadrupole resonance (NQR) and zero field nuclear magnetic resonance (ZFNMR) studies of YBa2_2Cu3_3O6.5_{6.5} show that a magnetic phase appears in underdoped 123 superconductors treated in ambient wet air. The studies give convincing evidence that the ``empty'' CuO chains play the role of easy water insertion channels. The reaction occurs first in ordered regions of the crystallites. The final product of the reaction is a non-superconducting antiferromagnetic compound characterized by at least two types of magnetically ordered copper ions with ZFNMR spectra respectively in the frequency ranges of 46-96 and 96-135 MHz respectively. Even for powder samples fixed in an epoxy resin, the reaction is found to occur partly after a few years.Comment: 3 pages, 3 figure
    corecore