313 research outputs found
Primary scene responses by Helicopter Emergency Medical Services in New South Wales Australia 2008–2009
BACKGROUND: Despite numerous studies evaluating the benefits of Helicopter Emergency Medical Services (HEMS) in primary scene responses, little information exists on the scope of HEMS activities in Australia. We describe HEMS primary scene responses with respect to the time taken, the distances travelled relative to the closest designated trauma hospital and the receiving hospital; as well as the clinical characteristics of patients attended. METHODS: Clinical service data were retrospectively obtained from three HEMS in New South Wales between July 2008 and June 2009. All available primary scene response data were extracted and examined. Geographic Information System (GIS) based network analysis was used to estimate hypothetical ground transport distances from the locality of each primary scene response to firstly the closest designated trauma hospital and secondly the receiving hospital. Predictors of bypassing the closest designated trauma hospital were analysed using logistic regression. RESULTS: Analyses included 596 primary missions. Overall the HEMS had a median return trip time of 94min including a median of 9min for activation, 34min travelling to the scene, 30min on-scene and 25min transporting patients to the receiving hospital. 72% of missions were within 100km of the receiving hospital and 87% of missions were in areas classified as ‘major cities’ or ‘inner regional’. The majority of incidents attended by HEMS were trauma-related, with road trauma the predominant cause (44%). The majority of trauma patients (81%) had normal physiology at HEMS arrival (RTS = 7.84). We found 62% of missions bypassed the closest designated trauma hospital. Multivariate predictors of bypass included: age; presence of spinal or burns trauma; the level of the closest designated trauma hospital; the transporting HEMS. CONCLUSION: Our results document the large distances travelled by HEMS in NSW, especially in rural areas. The high proportion of HEMS missions that bypass the closest designated trauma hospital is a seldom mentioned benefit of HEMS transport. These results along with the characteristics of patients attended and the time HEMS take to complete primary scene responses are useful in understanding the benefit HEMS provides and the services it replaces
Adolescent Self-Organization and Adult Smoking and Drinking over Fifty Years of Follow-Up:The British 1946 Birth Cohort
Variations in markers of adolescent self-organization predict a range of economic and health-related outcomes in general population studies. Using a population-based birth cohort study we investigated associations between adolescent self-organization and two common factors over adulthood influencing health, smoking and alcohol consumption. The MRC National Survey of Health and Development (the British 1946 birth cohort) was used to test associations between a dimensional measure of adolescent self-organization derived from teacher ratings, and summary longitudinal measures of smoking and alcohol consumption over the ensuing five decades. Multinomial regression models were adjusted for sex, adolescent emotional and conduct problems, occupational social class of origin, childhood cognition, educational attainment and adult occupational social class. With all covariates adjusted, higher adolescent self-organization was associated with fewer smoking pack years, although not with quitting; there was no association with alcohol consumption across adulthood (none or heavy compared with light to moderate). Adolescent self-organization appears to be protective against smoking, but not against heavy alcohol consumption. Interpretation of this differential effect should be embedded in an understanding of the social and sociodemographic context in which these health behaviours occur over time
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Simultaneous Observations of Irregular Sporadic E Structures using the LWA and a DPS4D
Multi-instrument studies have recently shed new light on the morphology of sporadic E, especially intense sporadic E. Here we present simultaneous observations of dense sporadic E (Es) structures using the Long Wavelength Array (LWA) radio telescopes and a Digisonde Portable Sounder 4D (DPS4D). Our coordinated observations show that the LWA radio telescopes in central New Mexico can reliably locate regions of dense Es structures as they pass over a Digisonde located over 500 km away in Texas. The LWA appears to be most sensitive to the densest Es structures, which also appear to contain irregularities with vertical structure, possibly indicating turbulence. These irregularities cause off-zenith backscatter, as observed by the DPS4D, and are observed to move at speeds of a few tens of m/s. The irregularities also appear to act as a phase screen, producing short-lived daytime spread F and E conditions. We hypothesize that turbulent structures driven by the Kelvin–Helmholtz (KH) instability may be responsible for the observations
Recommended from our members
Statistical decadal predictions for sea surface temperatures: a benchmark for dynamical GCM predictions
Accurate decadal climate predictions could be used to inform adaptation actions to a changing climate. The skill of such predictions from initialised dynamical global climate models (GCMs) may be assessed by comparing with predictions from statistical models which are based solely on historical observations. This paper presents two benchmark statistical models for predicting both the radiatively forced trend and internal variability of annual mean sea surface temperatures (SSTs) on a decadal timescale based on the gridded observation data set HadISST. For both statistical models, the trend related to radiative forcing is modelled using a linear regression of SST time series at each grid box on the time series of equivalent global mean atmospheric CO2 concentration. The residual internal variability is then modelled by (1) a first-order autoregressive model (AR1) and (2) a constructed analogue model (CA). From the verification of 46 retrospective forecasts with start years from 1960 to 2005, the correlation coefficient for anomaly forecasts using trend with AR1 is greater than 0.7 over parts of extra-tropical North Atlantic, the Indian Ocean and western Pacific. This is primarily related to the prediction of the forced trend. More importantly, both CA and AR1 give skillful predictions of the internal variability of SSTs in the subpolar gyre region over the far North Atlantic for lead time of 2 to 5 years, with correlation coefficients greater than 0.5. For the subpolar gyre and parts of the South Atlantic, CA is superior to AR1 for lead time of 6 to 9 years. These statistical forecasts are also compared with ensemble mean retrospective forecasts by DePreSys, an initialised GCM. DePreSys is found to outperform the statistical models over large parts of North Atlantic for lead times of 2 to 5 years and 6 to 9 years, however trend with AR1 is generally superior to DePreSys in the North Atlantic Current region, while trend with CA is superior to DePreSys in parts of South Atlantic for lead time of 6 to 9 years. These findings encourage further development of benchmark statistical decadal prediction models, and methods to combine different predictions
Therapeutic impact of cytoreductive surgery and irradiation of posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis
PURPOSE: Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known. METHODS: Four independent nonoverlapping retrospective cohorts of posterior fossa ependymomas (n = 820) were profiled using genome-wide methylation arrays. Risk stratification models were designed based on known clinical and newly described molecular biomarkers identified by multivariable Cox proportional hazards analyses. RESULTS: Molecular subgroup is a powerful independent predictor of outcome even when accounting for age or treatment regimen. Incompletely resected EPN_PFA ependymomas have a dismal prognosis, with a 5-year progression-free survival ranging from 26.1% to 56.8% across all four cohorts. Although first-line (adjuvant) radiation is clearly beneficial for completely resected EPN_PFA, a substantial proportion of patients with EPN_PFB can be cured with surgery alone, and patients with relapsed EPN_PFB can often be treated successfully with delayed external-beam irradiation. CONCLUSION: The most impactful biomarker for posterior fossa ependymoma is molecular subgroup affiliation, independent of other demographic or treatment variables. However, both EPN_PFA and EPN_PFB still benefit from increased extent of resection, with the survival rates being particularly poor for subtotally resected EPN_PFA, even with adjuvant radiation therapy. Patients with EPN_PFB who undergo gross total resection are at lower risk for relapse and should be considered for inclusion in a randomized clinical trial of observation alone with radiation reserved for those who experience recurrence
- …
