4,312 research outputs found

    Defining thalamic nuclei and topographic connectivity gradients in vivo.

    Get PDF
    The thalamus consists of multiple nuclei that have been previously defined by their chemoarchitectual and cytoarchitectual properties ex vivo. These form discrete, functionally specialized, territories with topographically arranged graduated patterns of connectivity. However, previous in vivo thalamic parcellation with MRI has been hindered by substantial inter-individual variability or discrepancies between MRI derived segmentations and histological sections. Here, we use the Euclidean distance to characterize probabilistic tractography distributions derived from diffusion MRI. We generate 12 feature maps by performing voxel-wise parameterization of the distance histograms (6 feature maps) and the distribution of three-dimensional distance transition gradients generated by applying a Sobel kernel to the distance metrics. We use these 12 feature maps to delineate individual thalamic nuclei, then extract the tractography profiles for each and calculate the voxel-wise tractography gradients. Within each thalamic nucleus, the tractography gradients were topographically arranged as distinct non-overlapping cortical networks with transitory overlapping mid-zones. This work significantly advances quantitative segmentation of the thalamus in vivo using 3T MRI. At an individual subject level, the thalamic segmentations consistently achieve a close relationship with a priori histological atlas information, and resolve in vivo topographic gradients within each thalamic nucleus for the first time. Additionally, these techniques allow individual thalamic nuclei to be closely aligned across large populations and generate measures of inter-individual variability that can be used to study both basic function and pathological processes in vivo

    IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10}: A Novel Reentrant Spin-Glass Material

    Get PDF
    A new iridium containing layered cuprate material, IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10, has been synthesized by conventional ambient-pressure solid-state techniques. The material's structure has been fully characterized by Rietveld refinement of high resolution synchrotron X-ray diffraction data; tilts and rotations of the IrO_6 octahedra are observed as a result of a bond mismatch between in-plane Ir-O and Cu-O bond lengths. DC-susceptibility measurements evidence a complex set of magnetic transitions upon cooling that are characteristic of a reentrant spin-glass ground-state. The glassy character of the lowest temperature, Tg=10 K, transition is further confirmed by AC-susceptibility measurements, showing a characteristic frequency dependence that can be well fitted by the Vogel-Fulcher law and yields a value of \Delta_(T_f)/[T_f \Delta log({\omega})] =0.015(1), typical of dilute magnetic systems. Electronic transport measurements show the material to be semiconducting at all temperatures with no transition to a superconducting state. Negative magnetoresistance is observed when the material is cooled below 25 K, and the magnitude of this magnetoresistance is seen to increase upon cooling to a value of MR = -9 % at 8 K

    Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2

    Get PDF
    The Ras oncogene products regulate the expression of genes in transformed cells, and members of the Ets family of transcription factors have been implicated in this process. To determine which Ets factors are the targets of Ras signaling pathways, the abilities of several Ets factors to activate Ras-responsive enhancer (RRE) reporters in the presence of oncogenic Ras were examined. In transient transfection assay, reporters containing RREs composed of Ets-AP-1 binding sites could be activated 30-fold in NIH 3T3 fibroblasts and 80-fold in the macrophage-like line RAW264 by the combination of Ets1 or Ets2 and Ras but not by several other Ets factors that were tested in the assay. Ets2 and Ras also superactivated an RRE composed of Ets-Ets binding sites, but the Ets-responsive promoter of the c-fms gene was not superactivated. Mutation of a threonine residue to alanine in the conserved amino-terminal regions of Ets1 and Ets2 (threonine 38 and threonine 72, respectively) abrogated the ability of each of these proteins to superactivate reporter gene expression. Phosphoamino acid analysis of radiolabeled Ets2 revealed that Ras induced normally absent threonine-specific phosphorylation of the protein. The Ras-dependent increase in threonine phosphorylation was not observed in Ets2 proteins that had the conserved threonine 72 residue mutated to alanine or serine. These data indicate that Ets1 and Ets2 are specific nuclear targets of Ras signaling events and that phosphorylation of a conserved threonine residue is a necessary molecular component of Ras-mediated activation of these transcription factors

    The resistance of randomly grown trees

    Get PDF
    Copyright @ 2011 IOP Publishing Ltd. This is a preprint version of the published article which can be accessed from the link below.An electrical network with the structure of a random tree is considered: starting from a root vertex, in one iteration each leaf (a vertex with zero or one adjacent edges) of the tree is extended by either a single edge with probability p or two edges with probability 1 − p. With each edge having a resistance equal to 1 omega, the total resistance Rn between the root vertex and a busbar connecting all the vertices at the nth level is considered. A dynamical system is presented which approximates Rn, it is shown that the mean value (Rn) for this system approaches (1 + p)/(1 − p) as n → ∞, the distribution of Rn at large n is also examined. Additionally, a random sequence construction akin to a random Fibonacci sequence is used to approximate Rn; this sequence is shown to be related to the Legendre polynomials and its mean is shown to converge with |(Rn) − (1 + p)/(1 − p)| ∼ n−1/2.Engineering and Physical Sciences Research Council (EPSRC
    corecore