2,050 research outputs found
The Quest for the Ideal Scintillator for Hybrid Phototubes
In this paper we present the results of extensive studies of scintillators
for hybrid phototubes with luminescent screens. The results of the developments
of such phototubes with a variety of scintillators are presented. New
scintillator materials for such kind of application are discussed. The
requirements for scintillators to use in such hybrid phototubes are formulated.
It is shown that very fast and highly efficient inorganic scintillators like
ZnO:Ga will be ideal scintillators for such kind of application.Comment: 5 pages, 6 figures and 1 table. Submitted to the proceedings of
SCINT2007 Conference, Winston-Salem, NC USA, June 4-8, 200
Stochastic Quasi-Fej\'er Block-Coordinate Fixed Point Iterations with Random Sweeping
This work proposes block-coordinate fixed point algorithms with applications
to nonlinear analysis and optimization in Hilbert spaces. The asymptotic
analysis relies on a notion of stochastic quasi-Fej\'er monotonicity, which is
thoroughly investigated. The iterative methods under consideration feature
random sweeping rules to select arbitrarily the blocks of variables that are
activated over the course of the iterations and they allow for stochastic
errors in the evaluation of the operators. Algorithms using quasinonexpansive
operators or compositions of averaged nonexpansive operators are constructed,
and weak and strong convergence results are established for the sequences they
generate. As a by-product, novel block-coordinate operator splitting methods
are obtained for solving structured monotone inclusion and convex minimization
problems. In particular, the proposed framework leads to random
block-coordinate versions of the Douglas-Rachford and forward-backward
algorithms and of some of their variants. In the standard case of block,
our results remain new as they incorporate stochastic perturbations
Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators
We investigate the asymptotic behavior of a stochastic version of the
forward-backward splitting algorithm for finding a zero of the sum of a
maximally monotone set-valued operator and a cocoercive operator in Hilbert
spaces. Our general setting features stochastic approximations of the
cocoercive operator and stochastic perturbations in the evaluation of the
resolvents of the set-valued operator. In addition, relaxations and not
necessarily vanishing proximal parameters are allowed. Weak and strong almost
sure convergence properties of the iterates is established under mild
conditions on the underlying stochastic processes. Leveraging these results, we
also establish the almost sure convergence of the iterates of a stochastic
variant of a primal-dual proximal splitting method for composite minimization
problems
Quasinonexpansive Iterations on the Affine Hull of Orbits: From Mann's Mean Value Algorithm to Inertial Methods
Fixed point iterations play a central role in the design and the analysis of
a large number of optimization algorithms. We study a new iterative scheme in
which the update is obtained by applying a composition of quasinonexpansive
operators to a point in the affine hull of the orbit generated up to the
current iterate. This investigation unifies several algorithmic constructs,
including Mann's mean value method, inertial methods, and multi-layer
memoryless methods. It also provides a framework for the development of new
algorithms, such as those we propose for solving monotone inclusion and
minimization problems
Variable Metric Forward-Backward Splitting with Applications to Monotone Inclusions in Duality
We propose a variable metric forward-backward splitting algorithm and prove
its convergence in real Hilbert spaces. We then use this framework to derive
primal-dual splitting algorithms for solving various classes of monotone
inclusions in duality. Some of these algorithms are new even when specialized
to the fixed metric case. Various applications are discussed
- …
