3,475 research outputs found
Dynamical Casimir-Polder energy between an excited and a ground-state atom
We consider the Casimir-Polder interaction between two atoms, one in the
ground state and the other in its excited state. The interaction is
time-dependent for this system, because of the dynamical self-dressing and the
spontaneous decay of the excited atom. We calculate the dynamical
Casimir-Polder potential between the two atoms using an effective Hamiltonian
approach. The results obtained and their physical meaning are discussed and
compared with previous results based on a time-independent approach which uses
a non-normalizable dressed state for the excited atom.Comment: 11 page
Poseidon: Mitigating Interest Flooding DDoS Attacks in Named Data Networking
Content-Centric Networking (CCN) is an emerging networking paradigm being
considered as a possible replacement for the current IP-based host-centric
Internet infrastructure. In CCN, named content becomes a first-class entity.
CCN focuses on content distribution, which dominates current Internet traffic
and is arguably not well served by IP. Named-Data Networking (NDN) is an
example of CCN. NDN is also an active research project under the NSF Future
Internet Architectures (FIA) program. FIA emphasizes security and privacy from
the outset and by design. To be a viable Internet architecture, NDN must be
resilient against current and emerging threats. This paper focuses on
distributed denial-of-service (DDoS) attacks; in particular we address interest
flooding, an attack that exploits key architectural features of NDN. We show
that an adversary with limited resources can implement such attack, having a
significant impact on network performance. We then introduce Poseidon: a
framework for detecting and mitigating interest flooding attacks. Finally, we
report on results of extensive simulations assessing proposed countermeasure.Comment: The IEEE Conference on Local Computer Networks (LCN 2013
Geometric phase for an accelerated two-level atom and the Unruh effect
We study, in the framework of open quantum systems, the geometric phase
acquired by a uniformly accelerated two-level atom undergoing nonunitary
evolution due to its coupling to a bath of fluctuating vacuum electromagnetic
fields in the multipolar scheme. We find that the phase variation due to the
acceleration can be in principle observed via atomic interferometry between the
accelerated atom and the inertial one, thus providing an evidence of the Unruh
effect.Comment: 12 pages, no figure
Non locality and causal evolution in QFT
Non locality appearing in QFT during the free evolution of localized field
states and in the Feynman propagator function is analyzed. It is shown to be
connected to the initial non local properties present at the level of quantum
states and then it does not imply a violation of Einstein's causality. Then it
is investigated a simple QFT system with interaction, consisting of a classical
source coupled linearly to a quantum scalar field, that is exactly solved. The
expression for the time evolution of the state describing the system is given.
The expectation value of any arbitrary ``good'' local observable, expressed as
a function of the field operator and its space and time derivatives, is
obtained explicitly at all order in the field-matter coupling constant. These
expectation values have a source dependent part that is shown to be always
causally retarded, while the non local contributions are source independent and
related to the non local properties of zero point vacuum fluctuations.Comment: Submitted to Journal of Physics B: 16 pages: 1 figur
Comment on 'Self-dressing and radiation reaction in classical electrodynamics'
Using the canonical formalism, Compagno and Persico [J. Phys. A: Math. Gen.
35 (2002) 3629--45] have calculated the 'radiation-reaction' force on a uniform
spherical charge moving rigidly, slowly and slightly from its position at the
time when the transverse electric field is assumed to vanish. This force is
shown to result in the same time-averaged self-force as that which has been
obtained by different means for the test charge of a Bohr--Rosenfeld
field-measurement procedure and which Compagno and Persico claimed to be
incorrect.Comment: REVTeX, 4 pages; this version has some cosmetic changes to agree
fully with the published version. Reply to this Comment is in G. Compagno and
F. Persico, J. Phys. A: Math. Gen. 35, 8965 (2002); response to the Reply is
in physics/021005
Quantum entanglement of identical particles by standard information-theoretic notions
Quantum entanglement of identical particles is essential in quantum
information theory. Yet, its correct determination remains an open issue
hindering the general understanding and exploitation of many-particle systems.
Operator-based methods have been developed that attempt to overcome the issue.
We introduce a state-based method which, as second quantization, does not label
identical particles and presents conceptual and technical advances compared to
the previous ones. It establishes the quantitative role played by arbitrary
wave function overlaps, local measurements and particle nature (bosons or
fermions) in assessing entanglement by notions commonly used in quantum
information theory for distinguishable particles, like partial trace. Our
approach furthermore shows that bringing identical particles into the same
spatial location functions as an entangling gate, providing fundamental
theoretical support to recent experimental observations with ultracold atoms.
These results pave the way to set and interpret experiments for utilizing
quantum correlations in realistic scenarios where overlap of particles can
count, as in Bose-Einstein condensates, quantum dots and biological molecular
aggregates.Comment: 6+3 pages, 3 Figures. Stories on: Physics World
(http://physicsworld.com/cws/article/news/2016/feb/12/theorists-disentangle-particle-identity);
Phys.org
(http://phys.org/news/2016-02-entanglement-identical-particles-doesnt-textbook.html).
Invited article on 2Physics.com, presenting key developments in physics
(http://www.2physics.com/2016/03/a-new-approach-to-quantum-entanglement.html
Efficient generation of -photon generalized binomial states in a cavity
Extending a previous result on the generation of two-photon generalized
binomial field states, here we propose an efficient scheme to generate with
high-fidelity, in a single-mode high-Q cavity, N-photon generalized binomial
states with a maximum number of photons N>2. Besides their interest for
classical-quantum border investigations, we discuss the applicative usage of
these states in realizing universal quantum computation, describing in
particular a scheme that performs a controlled-NOT gate by dispersive
interaction with a control atom. We finally analyze the feasibility of the
proposed schemes, showing that they appear to be within the current
experimental capabilities.Comment: 8 pages, 2 figure
- …
